Cargando…
Architecture and genomic arrangement of the MurE–MurF bacterial cell wall biosynthesis complex
Peptidoglycan (PG) is a central component of the bacterial cell wall, and the disruption of its biosynthetic pathway has been a successful antibacterial strategy for decades. PG biosynthesis is initiated in the cytoplasm through sequential reactions catalyzed by Mur enzymes that have been suggested...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10214165/ https://www.ncbi.nlm.nih.gov/pubmed/37186837 http://dx.doi.org/10.1073/pnas.2219540120 |
_version_ | 1785145883554217984 |
---|---|
author | Shirakawa, Karina T. Sala, Fernanda Angélica Miyachiro, Mayara M. Job, Viviana Trindade, Daniel Maragno Dessen, Andréa |
author_facet | Shirakawa, Karina T. Sala, Fernanda Angélica Miyachiro, Mayara M. Job, Viviana Trindade, Daniel Maragno Dessen, Andréa |
author_sort | Shirakawa, Karina T. |
collection | PubMed |
description | Peptidoglycan (PG) is a central component of the bacterial cell wall, and the disruption of its biosynthetic pathway has been a successful antibacterial strategy for decades. PG biosynthesis is initiated in the cytoplasm through sequential reactions catalyzed by Mur enzymes that have been suggested to associate into a multimembered complex. This idea is supported by the observation that in many eubacteria, mur genes are present in a single operon within the well conserved dcw cluster, and in some cases, pairs of mur genes are fused to encode a single, chimeric polypeptide. We performed a vast genomic analysis using >140 bacterial genomes and mapped Mur chimeras in numerous phyla, with Proteobacteria carrying the highest number. MurE–MurF, the most prevalent chimera, exists in forms that are either directly associated or separated by a linker. The crystal structure of the MurE–MurF chimera from Bordetella pertussis reveals a head-to-tail, elongated architecture supported by an interconnecting hydrophobic patch that stabilizes the positions of the two proteins. Fluorescence polarization assays reveal that MurE–MurF interacts with other Mur ligases via its central domains with K(D)s in the high nanomolar range, backing the existence of a Mur complex in the cytoplasm. These data support the idea of stronger evolutionary constraints on gene order when encoded proteins are intended for association, establish a link between Mur ligase interaction, complex assembly and genome evolution, and shed light on regulatory mechanisms of protein expression and stability in pathways of critical importance for bacterial survival. |
format | Online Article Text |
id | pubmed-10214165 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-102141652023-11-15 Architecture and genomic arrangement of the MurE–MurF bacterial cell wall biosynthesis complex Shirakawa, Karina T. Sala, Fernanda Angélica Miyachiro, Mayara M. Job, Viviana Trindade, Daniel Maragno Dessen, Andréa Proc Natl Acad Sci U S A Biological Sciences Peptidoglycan (PG) is a central component of the bacterial cell wall, and the disruption of its biosynthetic pathway has been a successful antibacterial strategy for decades. PG biosynthesis is initiated in the cytoplasm through sequential reactions catalyzed by Mur enzymes that have been suggested to associate into a multimembered complex. This idea is supported by the observation that in many eubacteria, mur genes are present in a single operon within the well conserved dcw cluster, and in some cases, pairs of mur genes are fused to encode a single, chimeric polypeptide. We performed a vast genomic analysis using >140 bacterial genomes and mapped Mur chimeras in numerous phyla, with Proteobacteria carrying the highest number. MurE–MurF, the most prevalent chimera, exists in forms that are either directly associated or separated by a linker. The crystal structure of the MurE–MurF chimera from Bordetella pertussis reveals a head-to-tail, elongated architecture supported by an interconnecting hydrophobic patch that stabilizes the positions of the two proteins. Fluorescence polarization assays reveal that MurE–MurF interacts with other Mur ligases via its central domains with K(D)s in the high nanomolar range, backing the existence of a Mur complex in the cytoplasm. These data support the idea of stronger evolutionary constraints on gene order when encoded proteins are intended for association, establish a link between Mur ligase interaction, complex assembly and genome evolution, and shed light on regulatory mechanisms of protein expression and stability in pathways of critical importance for bacterial survival. National Academy of Sciences 2023-05-15 2023-05-23 /pmc/articles/PMC10214165/ /pubmed/37186837 http://dx.doi.org/10.1073/pnas.2219540120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Shirakawa, Karina T. Sala, Fernanda Angélica Miyachiro, Mayara M. Job, Viviana Trindade, Daniel Maragno Dessen, Andréa Architecture and genomic arrangement of the MurE–MurF bacterial cell wall biosynthesis complex |
title | Architecture and genomic arrangement of the MurE–MurF bacterial cell wall biosynthesis complex |
title_full | Architecture and genomic arrangement of the MurE–MurF bacterial cell wall biosynthesis complex |
title_fullStr | Architecture and genomic arrangement of the MurE–MurF bacterial cell wall biosynthesis complex |
title_full_unstemmed | Architecture and genomic arrangement of the MurE–MurF bacterial cell wall biosynthesis complex |
title_short | Architecture and genomic arrangement of the MurE–MurF bacterial cell wall biosynthesis complex |
title_sort | architecture and genomic arrangement of the mure–murf bacterial cell wall biosynthesis complex |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10214165/ https://www.ncbi.nlm.nih.gov/pubmed/37186837 http://dx.doi.org/10.1073/pnas.2219540120 |
work_keys_str_mv | AT shirakawakarinat architectureandgenomicarrangementofthemuremurfbacterialcellwallbiosynthesiscomplex AT salafernandaangelica architectureandgenomicarrangementofthemuremurfbacterialcellwallbiosynthesiscomplex AT miyachiromayaram architectureandgenomicarrangementofthemuremurfbacterialcellwallbiosynthesiscomplex AT jobviviana architectureandgenomicarrangementofthemuremurfbacterialcellwallbiosynthesiscomplex AT trindadedanielmaragno architectureandgenomicarrangementofthemuremurfbacterialcellwallbiosynthesiscomplex AT dessenandrea architectureandgenomicarrangementofthemuremurfbacterialcellwallbiosynthesiscomplex |