Cargando…
Mechanically manipulating glymphatic transport by ultrasound combined with microbubbles
The glymphatic system is a perivascular fluid transport system for waste clearance. Glymphatic transport is believed to be driven by the perivascular pumping effect created by the pulsation of the arterial wall caused by the cardiac cycle. Ultrasound sonication of circulating microbubbles (MBs) in t...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10214201/ https://www.ncbi.nlm.nih.gov/pubmed/37186852 http://dx.doi.org/10.1073/pnas.2212933120 |
_version_ | 1785047788377079808 |
---|---|
author | Ye, Dezhuang Chen, Si Liu, Yajie Weixel, Charlotte Hu, Zhongtao Yuan, Jinyun Chen, Hong |
author_facet | Ye, Dezhuang Chen, Si Liu, Yajie Weixel, Charlotte Hu, Zhongtao Yuan, Jinyun Chen, Hong |
author_sort | Ye, Dezhuang |
collection | PubMed |
description | The glymphatic system is a perivascular fluid transport system for waste clearance. Glymphatic transport is believed to be driven by the perivascular pumping effect created by the pulsation of the arterial wall caused by the cardiac cycle. Ultrasound sonication of circulating microbubbles (MBs) in the cerebral vasculature induces volumetric expansion and contraction of MBs that push and pull on the vessel wall to generate a MB pumping effect. The objective of this study was to evaluate whether glymphatic transport can be mechanically manipulated by focused ultrasound (FUS) sonication of MBs. The glymphatic pathway in intact mouse brains was studied using intranasal administration of fluorescently labeled albumin as fluid tracers, followed by FUS sonication at a deep brain target (thalamus) in the presence of intravenously injected MBs. Intracisternal magna injection, the conventional technique used in studying glymphatic transport, was employed to provide a comparative reference. Three-dimensional confocal microscopy imaging of optically cleared brain tissue revealed that FUS sonication enhanced the transport of fluorescently labeled albumin tracer in the perivascular space (PVS) along microvessels, primarily the arterioles. We also obtained evidence of FUS-enhanced penetration of the albumin tracer from the PVS into the interstitial space. This study revealed that ultrasound combined with circulating MBs could mechanically enhance glymphatic transport in the brain. |
format | Online Article Text |
id | pubmed-10214201 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-102142012023-05-27 Mechanically manipulating glymphatic transport by ultrasound combined with microbubbles Ye, Dezhuang Chen, Si Liu, Yajie Weixel, Charlotte Hu, Zhongtao Yuan, Jinyun Chen, Hong Proc Natl Acad Sci U S A Biological Sciences The glymphatic system is a perivascular fluid transport system for waste clearance. Glymphatic transport is believed to be driven by the perivascular pumping effect created by the pulsation of the arterial wall caused by the cardiac cycle. Ultrasound sonication of circulating microbubbles (MBs) in the cerebral vasculature induces volumetric expansion and contraction of MBs that push and pull on the vessel wall to generate a MB pumping effect. The objective of this study was to evaluate whether glymphatic transport can be mechanically manipulated by focused ultrasound (FUS) sonication of MBs. The glymphatic pathway in intact mouse brains was studied using intranasal administration of fluorescently labeled albumin as fluid tracers, followed by FUS sonication at a deep brain target (thalamus) in the presence of intravenously injected MBs. Intracisternal magna injection, the conventional technique used in studying glymphatic transport, was employed to provide a comparative reference. Three-dimensional confocal microscopy imaging of optically cleared brain tissue revealed that FUS sonication enhanced the transport of fluorescently labeled albumin tracer in the perivascular space (PVS) along microvessels, primarily the arterioles. We also obtained evidence of FUS-enhanced penetration of the albumin tracer from the PVS into the interstitial space. This study revealed that ultrasound combined with circulating MBs could mechanically enhance glymphatic transport in the brain. National Academy of Sciences 2023-05-15 2023-05-23 /pmc/articles/PMC10214201/ /pubmed/37186852 http://dx.doi.org/10.1073/pnas.2212933120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Ye, Dezhuang Chen, Si Liu, Yajie Weixel, Charlotte Hu, Zhongtao Yuan, Jinyun Chen, Hong Mechanically manipulating glymphatic transport by ultrasound combined with microbubbles |
title | Mechanically manipulating glymphatic transport by ultrasound combined with microbubbles |
title_full | Mechanically manipulating glymphatic transport by ultrasound combined with microbubbles |
title_fullStr | Mechanically manipulating glymphatic transport by ultrasound combined with microbubbles |
title_full_unstemmed | Mechanically manipulating glymphatic transport by ultrasound combined with microbubbles |
title_short | Mechanically manipulating glymphatic transport by ultrasound combined with microbubbles |
title_sort | mechanically manipulating glymphatic transport by ultrasound combined with microbubbles |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10214201/ https://www.ncbi.nlm.nih.gov/pubmed/37186852 http://dx.doi.org/10.1073/pnas.2212933120 |
work_keys_str_mv | AT yedezhuang mechanicallymanipulatingglymphatictransportbyultrasoundcombinedwithmicrobubbles AT chensi mechanicallymanipulatingglymphatictransportbyultrasoundcombinedwithmicrobubbles AT liuyajie mechanicallymanipulatingglymphatictransportbyultrasoundcombinedwithmicrobubbles AT weixelcharlotte mechanicallymanipulatingglymphatictransportbyultrasoundcombinedwithmicrobubbles AT huzhongtao mechanicallymanipulatingglymphatictransportbyultrasoundcombinedwithmicrobubbles AT yuanjinyun mechanicallymanipulatingglymphatictransportbyultrasoundcombinedwithmicrobubbles AT chenhong mechanicallymanipulatingglymphatictransportbyultrasoundcombinedwithmicrobubbles |