Cargando…

Modulating Emission of Boric Acid into Highly Efficient and Color‐Tunable Afterglow via Dehydration‐Induced Through‐Space Conjugation

Inorganic boric acid (BA) is generally not considered an efficient afterglow material, and several groups have reported its extremely weak room‐temperature phosphorescence (RTP) in the blue spectral region. It is discovered that heat treatment of BA results in increased afterglow intensity (27‐fold...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Zhen, Wang, Zhenguang, Liu, Xiao, Shi, Yu‐e, Li, Zhiqiang, Zhao, Yanli
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10214226/
https://www.ncbi.nlm.nih.gov/pubmed/36950728
http://dx.doi.org/10.1002/advs.202300139
Descripción
Sumario:Inorganic boric acid (BA) is generally not considered an efficient afterglow material, and several groups have reported its extremely weak room‐temperature phosphorescence (RTP) in the blue spectral region. It is discovered that heat treatment of BA results in increased afterglow intensity (27‐fold increase) and prolonged emission lifetime (from 0.83 to 1.59 s), attributed to enhanced through‐space conjugation (TSC) of BA. The afterglow intensity of BA can be increased further (≈415 folds) by introducing p‐hydroxybenzoic acid (PHA), which contains a conjugated molecular motif, to further promote the TSC of the BA system. This combination results in the production of afterglow materials with a photoluminescence quantum yield of 83.8% and an emission lifetime of 2.01 s. In addition, a tunable multicolor afterglow in the 420–490 nm range is achieved owing to the enhancement of the RTP and thermally activated delayed fluorescence of PHA, where BA exerts a confinement effect on the guest molecules. Thus, this study demonstrates promising afterglow materials produced from extremely abundant and simple precursor materials for various applications.