Cargando…
Self‐Curable Synaptic Ferroelectric FET Arrays for Neuromorphic Convolutional Neural Network
With the recently increasing prevalence of deep learning, both academia and industry exhibit substantial interest in neuromorphic computing, which mimics the functional and structural features of the human brain. To realize neuromorphic computing, an energy‐efficient and reliable artificial synapse...
Autores principales: | Shin, Wonjun, Im, Jiyong, Koo, Ryun‐Han, Kim, Jaehyeon, Kwon, Ki‐Ryun, Kwon, Dongseok, Kim, Jae‐Joon, Lee, Jong‐Ho, Kwon, Daewoong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10214256/ https://www.ncbi.nlm.nih.gov/pubmed/36973600 http://dx.doi.org/10.1002/advs.202207661 |
Ejemplares similares
-
Reconfigurable neuromorphic computing block through integration of flash synapse arrays and super-steep neurons
por: Kwon, Dongseok, et al.
Publicado: (2023) -
Recovery of off-state stress-induced damage in FET-type gas sensor using self-curing method
por: Shin, Wonjun, et al.
Publicado: (2023) -
CMOS-compatible compute-in-memory accelerators based on integrated ferroelectric synaptic arrays for convolution neural networks
por: Kim, Min-Kyu, et al.
Publicado: (2022) -
Synaptic Characteristic of Hafnia-Based Ferroelectric Tunnel Junction Device for Neuromorphic Computing Application
por: Kho, Wonwoo, et al.
Publicado: (2022) -
Spike Optimization to Improve Properties of Ferroelectric Tunnel Junction Synaptic Devices for Neuromorphic Computing System Applications
por: Byun, Jisu, et al.
Publicado: (2023)