Cargando…
Over 30-Fold Enhancement in DNA Translocation Dynamics through Nanoscale Pores Coated with an Anionic Surfactant
[Image: see text] Solid-state nanopores (ssNPs) are single-molecule sensors capable of label-free quantification of different biomolecules, which have become highly versatile with the introduction of different surface treatments. By modulating the surface charges of the ssNP, the electro-osmotic flo...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10214489/ https://www.ncbi.nlm.nih.gov/pubmed/37149783 http://dx.doi.org/10.1021/acs.nanolett.3c01096 |
_version_ | 1785047852058148864 |
---|---|
author | Soni, Neeraj Chandra Verma, Navneet Talor, Noam Meller, Amit |
author_facet | Soni, Neeraj Chandra Verma, Navneet Talor, Noam Meller, Amit |
author_sort | Soni, Neeraj |
collection | PubMed |
description | [Image: see text] Solid-state nanopores (ssNPs) are single-molecule sensors capable of label-free quantification of different biomolecules, which have become highly versatile with the introduction of different surface treatments. By modulating the surface charges of the ssNP, the electro-osmotic flow (EOF) can be controlled in turn affecting the in-pore hydrodynamic forces. Herein, we demonstrate that negative charge surfactant coating to ssNPs generates EOF that slows-down DNA translocation speed by >30-fold, without deterioration of the NP noise, hence significantly improving its performances. Consequently, surfactant-coated ssNPs can be used to reliably sense short DNA fragments at high voltage bias. To shed light on the EOF phenomena inside planar ssNPs, we introduce visualization of the electrically neutral fluorescent molecule’s flow, hence decoupling the electrophoretic from EOF forces. Finite elements simulations are then used to show that EOF is likely responsible for in-pore drag and size-selective capture rate. This study broadens ssNPs use for multianalyte sensing in a single device. |
format | Online Article Text |
id | pubmed-10214489 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-102144892023-05-27 Over 30-Fold Enhancement in DNA Translocation Dynamics through Nanoscale Pores Coated with an Anionic Surfactant Soni, Neeraj Chandra Verma, Navneet Talor, Noam Meller, Amit Nano Lett [Image: see text] Solid-state nanopores (ssNPs) are single-molecule sensors capable of label-free quantification of different biomolecules, which have become highly versatile with the introduction of different surface treatments. By modulating the surface charges of the ssNP, the electro-osmotic flow (EOF) can be controlled in turn affecting the in-pore hydrodynamic forces. Herein, we demonstrate that negative charge surfactant coating to ssNPs generates EOF that slows-down DNA translocation speed by >30-fold, without deterioration of the NP noise, hence significantly improving its performances. Consequently, surfactant-coated ssNPs can be used to reliably sense short DNA fragments at high voltage bias. To shed light on the EOF phenomena inside planar ssNPs, we introduce visualization of the electrically neutral fluorescent molecule’s flow, hence decoupling the electrophoretic from EOF forces. Finite elements simulations are then used to show that EOF is likely responsible for in-pore drag and size-selective capture rate. This study broadens ssNPs use for multianalyte sensing in a single device. American Chemical Society 2023-05-07 /pmc/articles/PMC10214489/ /pubmed/37149783 http://dx.doi.org/10.1021/acs.nanolett.3c01096 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Soni, Neeraj Chandra Verma, Navneet Talor, Noam Meller, Amit Over 30-Fold Enhancement in DNA Translocation Dynamics through Nanoscale Pores Coated with an Anionic Surfactant |
title | Over 30-Fold
Enhancement in DNA Translocation Dynamics
through Nanoscale Pores Coated with an Anionic Surfactant |
title_full | Over 30-Fold
Enhancement in DNA Translocation Dynamics
through Nanoscale Pores Coated with an Anionic Surfactant |
title_fullStr | Over 30-Fold
Enhancement in DNA Translocation Dynamics
through Nanoscale Pores Coated with an Anionic Surfactant |
title_full_unstemmed | Over 30-Fold
Enhancement in DNA Translocation Dynamics
through Nanoscale Pores Coated with an Anionic Surfactant |
title_short | Over 30-Fold
Enhancement in DNA Translocation Dynamics
through Nanoscale Pores Coated with an Anionic Surfactant |
title_sort | over 30-fold
enhancement in dna translocation dynamics
through nanoscale pores coated with an anionic surfactant |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10214489/ https://www.ncbi.nlm.nih.gov/pubmed/37149783 http://dx.doi.org/10.1021/acs.nanolett.3c01096 |
work_keys_str_mv | AT sonineeraj over30foldenhancementindnatranslocationdynamicsthroughnanoscaleporescoatedwithananionicsurfactant AT chandravermanavneet over30foldenhancementindnatranslocationdynamicsthroughnanoscaleporescoatedwithananionicsurfactant AT talornoam over30foldenhancementindnatranslocationdynamicsthroughnanoscaleporescoatedwithananionicsurfactant AT melleramit over30foldenhancementindnatranslocationdynamicsthroughnanoscaleporescoatedwithananionicsurfactant |