Cargando…

Research on radiation field and driving based on super-low frequency mechanical antenna array

Mechanical antennas (MAs) directly use the mechanical motion of electric or magnetic charges to excite electromagnetic waves. The radiation distance of rotating magnetic dipole type mechanical antennas is related to the volume of the radiation source, so the volume of the radiation source is too lar...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xiaoyu, Yang, Xijie, Li, Ziyi, Zhang, Boyan, Cao, Zhenxin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10214727/
https://www.ncbi.nlm.nih.gov/pubmed/37250322
http://dx.doi.org/10.1016/j.isci.2023.106741
Descripción
Sumario:Mechanical antennas (MAs) directly use the mechanical motion of electric or magnetic charges to excite electromagnetic waves. The radiation distance of rotating magnetic dipole type mechanical antennas is related to the volume of the radiation source, so the volume of the radiation source is too large for long-distance communication. To solve the above problem, we first establish the magnetic field model and differential equations of motion of the antenna array. Then, we design the prototype of antenna array with operating frequency of 75–125Hz. Finally, we experimentally established the radiation intensity relationship between a single permanent magnet and an array of permanent magnets. The results indicate that our driving model reduces the tolerance of the signal by 47%. Through 2FSK communication experiments, this article verifies the feasibility of extending the communication distance in the form of an array, which provides an important reference for long-distance low-frequency communication.