Cargando…
The persistent homology of mitochondrial ATP synthases
Relatively little is known about ATP synthase structure in protists, and the investigated ones exhibit divergent structures distinct from yeast or animals. To clarify the subunit composition of ATP synthases across all eukaryotic lineages, we used homology detection techniques and molecular modeling...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10214729/ https://www.ncbi.nlm.nih.gov/pubmed/37250340 http://dx.doi.org/10.1016/j.isci.2023.106700 |
Sumario: | Relatively little is known about ATP synthase structure in protists, and the investigated ones exhibit divergent structures distinct from yeast or animals. To clarify the subunit composition of ATP synthases across all eukaryotic lineages, we used homology detection techniques and molecular modeling tools to identify an ancestral set of 17 ATP synthase subunits. Most eukaryotes possess an ATP synthase comparable to those of animals and fungi, while some have undergone drastic divergence (e.g., ciliates, myzozoans, euglenozoans). Additionally, a ∼1 billion-year-old gene fusion between ATP synthase stator subunits was identified as a synapomorphy of the SAR (Stramenopila, Alveolata, Rhizaria) supergroup (stramenopile, alveolate, rhizaria). Our comparative approach highlights the persistence of ancestral subunits even amidst major structural changes. We conclude by urging that more ATP synthase structures (e.g., from jakobids, heteroloboseans, stramenopiles, rhizarians) are needed to provide a complete picture of the evolution of the structural diversity of this ancient and essential complex. |
---|