Cargando…

The time course of chromatic adaptation in human early visual cortex revealed by SSVEPs

Previous studies have identified at least two components of chromatic adaptation: a rapid component with a time scale between tens of milliseconds to a few seconds, and a slow component with a half-life of about 10 to 30 seconds. The basis of the rapid adaptation probably lies in receptor adaptation...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yuan, Valsecchi, Matteo, Gegenfurtner, Karl R., Chen, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Association for Research in Vision and Ophthalmology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10214868/
https://www.ncbi.nlm.nih.gov/pubmed/37223943
http://dx.doi.org/10.1167/jov.23.5.17
_version_ 1785047929785942016
author Zhang, Yuan
Valsecchi, Matteo
Gegenfurtner, Karl R.
Chen, Jing
author_facet Zhang, Yuan
Valsecchi, Matteo
Gegenfurtner, Karl R.
Chen, Jing
author_sort Zhang, Yuan
collection PubMed
description Previous studies have identified at least two components of chromatic adaptation: a rapid component with a time scale between tens of milliseconds to a few seconds, and a slow component with a half-life of about 10 to 30 seconds. The basis of the rapid adaptation probably lies in receptor adaptation at the retina. The neural substrate for the slow adaptation remains unclear, although previous psychophysical results hint at the early visual cortex. A promising approach to investigate adaptation effects in the visual cortex is to analyze steady-state visual evoked potentials (SSVEPs) elicited by chromatic stimuli, which typically use long durations of stimulation. Here, we re-analyzed the data from two previous pattern-reversal SSVEP studies. In these experiments (N = 49 observers in total), SSVEPs were elicited by counter-phase flickering color- or luminance-defined grating stimuli for 150 seconds in each trial. By analyzing SSVEPs with short time windows, we found that chromatic SSVEP responses decreased with increasing stimulation duration and reached a lower asymptote within a minute of stimulation. The luminance SSVEPs did not show any systematic adaptation. The time course of chromatic SSVEPs can be well described by an exponential decay function with a half-life of about 20 seconds, which is very close to previous psychophysical reports. Despite the difference in stimuli between the current and previous studies, the coherent time course may indicate a more general adaptation mechanism in the early visual cortex. In addition, the current result also provides a guide for future color SSVEP studies in terms of either avoiding or exploiting this adaptation effect.
format Online
Article
Text
id pubmed-10214868
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher The Association for Research in Vision and Ophthalmology
record_format MEDLINE/PubMed
spelling pubmed-102148682023-05-27 The time course of chromatic adaptation in human early visual cortex revealed by SSVEPs Zhang, Yuan Valsecchi, Matteo Gegenfurtner, Karl R. Chen, Jing J Vis Article Previous studies have identified at least two components of chromatic adaptation: a rapid component with a time scale between tens of milliseconds to a few seconds, and a slow component with a half-life of about 10 to 30 seconds. The basis of the rapid adaptation probably lies in receptor adaptation at the retina. The neural substrate for the slow adaptation remains unclear, although previous psychophysical results hint at the early visual cortex. A promising approach to investigate adaptation effects in the visual cortex is to analyze steady-state visual evoked potentials (SSVEPs) elicited by chromatic stimuli, which typically use long durations of stimulation. Here, we re-analyzed the data from two previous pattern-reversal SSVEP studies. In these experiments (N = 49 observers in total), SSVEPs were elicited by counter-phase flickering color- or luminance-defined grating stimuli for 150 seconds in each trial. By analyzing SSVEPs with short time windows, we found that chromatic SSVEP responses decreased with increasing stimulation duration and reached a lower asymptote within a minute of stimulation. The luminance SSVEPs did not show any systematic adaptation. The time course of chromatic SSVEPs can be well described by an exponential decay function with a half-life of about 20 seconds, which is very close to previous psychophysical reports. Despite the difference in stimuli between the current and previous studies, the coherent time course may indicate a more general adaptation mechanism in the early visual cortex. In addition, the current result also provides a guide for future color SSVEP studies in terms of either avoiding or exploiting this adaptation effect. The Association for Research in Vision and Ophthalmology 2023-05-24 /pmc/articles/PMC10214868/ /pubmed/37223943 http://dx.doi.org/10.1167/jov.23.5.17 Text en Copyright 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
spellingShingle Article
Zhang, Yuan
Valsecchi, Matteo
Gegenfurtner, Karl R.
Chen, Jing
The time course of chromatic adaptation in human early visual cortex revealed by SSVEPs
title The time course of chromatic adaptation in human early visual cortex revealed by SSVEPs
title_full The time course of chromatic adaptation in human early visual cortex revealed by SSVEPs
title_fullStr The time course of chromatic adaptation in human early visual cortex revealed by SSVEPs
title_full_unstemmed The time course of chromatic adaptation in human early visual cortex revealed by SSVEPs
title_short The time course of chromatic adaptation in human early visual cortex revealed by SSVEPs
title_sort time course of chromatic adaptation in human early visual cortex revealed by ssveps
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10214868/
https://www.ncbi.nlm.nih.gov/pubmed/37223943
http://dx.doi.org/10.1167/jov.23.5.17
work_keys_str_mv AT zhangyuan thetimecourseofchromaticadaptationinhumanearlyvisualcortexrevealedbyssveps
AT valsecchimatteo thetimecourseofchromaticadaptationinhumanearlyvisualcortexrevealedbyssveps
AT gegenfurtnerkarlr thetimecourseofchromaticadaptationinhumanearlyvisualcortexrevealedbyssveps
AT chenjing thetimecourseofchromaticadaptationinhumanearlyvisualcortexrevealedbyssveps
AT zhangyuan timecourseofchromaticadaptationinhumanearlyvisualcortexrevealedbyssveps
AT valsecchimatteo timecourseofchromaticadaptationinhumanearlyvisualcortexrevealedbyssveps
AT gegenfurtnerkarlr timecourseofchromaticadaptationinhumanearlyvisualcortexrevealedbyssveps
AT chenjing timecourseofchromaticadaptationinhumanearlyvisualcortexrevealedbyssveps