Cargando…
Evaluation of dose perturbations around iodine-125 seed sources in supplemental external beam prostate radiotherapy
We investigated dose perturbations caused by (125)I seeds in patients undergoing supplemental external beam radiotherapy (EBRT) for prostate cancer. We examined two types of nonradioactive seed models: model 6711 and model STM1251. All experiments were performed using a water-equivalent phantom. Rad...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10215002/ https://www.ncbi.nlm.nih.gov/pubmed/37154504 http://dx.doi.org/10.1093/jrr/rrad023 |
Sumario: | We investigated dose perturbations caused by (125)I seeds in patients undergoing supplemental external beam radiotherapy (EBRT) for prostate cancer. We examined two types of nonradioactive seed models: model 6711 and model STM1251. All experiments were performed using a water-equivalent phantom. Radiochromic film was used to measure the dose distributions adjacent to the seeds upstream and downstream of the external beam source. Single and clusters of multiple seeds were placed in slots in a solid water (SW) slab to measure dose perturbations with separate versus dense seed placement at beam energies of 6 or 10 MV. Monte Carlo simulations (MCSs) were also performed to include the theoretical basis against film dosimetry. Distinct patterns of dose enhancement (buildup [BU]) were upstream, and dose reduction (builddown [BD]) were downstream of the radiation source. Model 6711 with lower photon beam energies produced larger dose perturbations of BU and BD than the model STM1251. The results showed the same tendency with different seed placements and beam energies. However, these differences were not observed in the rotational irradiation measurement, which replicated a clinical plan. Dose perturbations around seeds result in dose enhancement and dose reduction with varying impact depending on the photon beam energy and seed type. This has the potential to cancel out these perturbations using multiple beam direction fields. |
---|