Cargando…
Semantic Segmentation of Medical Images Based on Runge–Kutta Methods
In recent years, deep learning has achieved good results in the semantic segmentation of medical images. A typical architecture for segmentation networks is an encoder–decoder structure. However, the design of the segmentation networks is fragmented and lacks a mathematical explanation. Consequently...
Autores principales: | Zhu, Mai, Fu, Chong, Wang, Xingwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10215087/ https://www.ncbi.nlm.nih.gov/pubmed/37237576 http://dx.doi.org/10.3390/bioengineering10050506 |
Ejemplares similares
-
Error behaviour of exponential Runge-Kutta methods
por: Kværnø, Anne
Publicado: (2005) -
Stochastic Bayesian Runge-Kutta method for dengue dynamic mapping
por: Mukhsar, et al.
Publicado: (2022) -
Stable local-global stepsize control for Runge-Kutta methods
por: Kulikov, G Yu
Publicado: (1997) -
Generalized disks of contractivity for explicit and implicit runge-kutta methods
por: Dahlquist, Germund
Publicado: (1979) -
The numerical solution of differential-algebraic systems by Runge-Kutta methods
por: Hairer, Ernst, et al.
Publicado: (1989)