Cargando…
Transformer-Based Network with Optimization for Cross-Subject Motor Imagery Identification
Exploring the effective signal features of electroencephalogram (EEG) signals is an important issue in the research of brain–computer interface (BCI), and the results can reveal the motor intentions that trigger electrical changes in the brain, which has broad research prospects for feature extracti...
Autores principales: | Tan, Xiyue, Wang, Dan, Chen, Jiaming, Xu, Meng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10215191/ https://www.ncbi.nlm.nih.gov/pubmed/37237679 http://dx.doi.org/10.3390/bioengineering10050609 |
Ejemplares similares
-
MSATNet: multi-scale adaptive transformer network for motor imagery classification
por: Hu, Lingyan, et al.
Publicado: (2023) -
Deep Neural Network with Joint Distribution Matching for Cross-Subject Motor Imagery Brain-Computer Interfaces
por: Zhao, Xianghong, et al.
Publicado: (2020) -
Transformed common spatial pattern for motor imagery-based brain-computer interfaces
por: Ma, Zhen, et al.
Publicado: (2023) -
Discrepancy between inter- and intra-subject variability in EEG-based motor imagery brain-computer interface: Evidence from multiple perspectives
por: Huang, Gan, et al.
Publicado: (2023) -
Local and global convolutional transformer-based motor imagery EEG classification
por: Zhang, Jiayang, et al.
Publicado: (2023)