Cargando…

Multimodal Stereotactic Brain Tumor Segmentation Using 3D-Znet

Stereotactic brain tumor segmentation based on 3D neuroimaging data is a challenging task due to the complexity of the brain architecture, extreme heterogeneity of tumor malformations, and the extreme variability of intensity signal and noise distributions. Early tumor diagnosis can help medical pro...

Descripción completa

Detalles Bibliográficos
Autores principales: Ottom, Mohammad Ashraf, Abdul Rahman, Hanif, Alazzam, Iyad M., Dinov, Ivo D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10215207/
https://www.ncbi.nlm.nih.gov/pubmed/37237652
http://dx.doi.org/10.3390/bioengineering10050581
_version_ 1785048008533999616
author Ottom, Mohammad Ashraf
Abdul Rahman, Hanif
Alazzam, Iyad M.
Dinov, Ivo D.
author_facet Ottom, Mohammad Ashraf
Abdul Rahman, Hanif
Alazzam, Iyad M.
Dinov, Ivo D.
author_sort Ottom, Mohammad Ashraf
collection PubMed
description Stereotactic brain tumor segmentation based on 3D neuroimaging data is a challenging task due to the complexity of the brain architecture, extreme heterogeneity of tumor malformations, and the extreme variability of intensity signal and noise distributions. Early tumor diagnosis can help medical professionals to select optimal medical treatment plans that can potentially save lives. Artificial intelligence (AI) has previously been used for automated tumor diagnostics and segmentation models. However, the model development, validation, and reproducibility processes are challenging. Often, cumulative efforts are required to produce a fully automated and reliable computer-aided diagnostic system for tumor segmentation. This study proposes an enhanced deep neural network approach, the 3D-Znet model, based on the variational autoencoder–autodecoder Znet method, for segmenting 3D MR (magnetic resonance) volumes. The 3D-Znet artificial neural network architecture relies on fully dense connections to enable the reuse of features on multiple levels to improve model performance. It consists of four encoders and four decoders along with the initial input and the final output blocks. Encoder–decoder blocks in the network include double convolutional 3D layers, 3D batch normalization, and an activation function. These are followed by size normalization between inputs and outputs and network concatenation across the encoding and decoding branches. The proposed deep convolutional neural network model was trained and validated using a multimodal stereotactic neuroimaging dataset (BraTS2020) that includes multimodal tumor masks. Evaluation of the pretrained model resulted in the following dice coefficient scores: Whole Tumor (WT) = 0.91, Tumor Core (TC) = 0.85, and Enhanced Tumor (ET) = 0.86. The performance of the proposed 3D-Znet method is comparable to other state-of-the-art methods. Our protocol demonstrates the importance of data augmentation to avoid overfitting and enhance model performance.
format Online
Article
Text
id pubmed-10215207
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-102152072023-05-27 Multimodal Stereotactic Brain Tumor Segmentation Using 3D-Znet Ottom, Mohammad Ashraf Abdul Rahman, Hanif Alazzam, Iyad M. Dinov, Ivo D. Bioengineering (Basel) Article Stereotactic brain tumor segmentation based on 3D neuroimaging data is a challenging task due to the complexity of the brain architecture, extreme heterogeneity of tumor malformations, and the extreme variability of intensity signal and noise distributions. Early tumor diagnosis can help medical professionals to select optimal medical treatment plans that can potentially save lives. Artificial intelligence (AI) has previously been used for automated tumor diagnostics and segmentation models. However, the model development, validation, and reproducibility processes are challenging. Often, cumulative efforts are required to produce a fully automated and reliable computer-aided diagnostic system for tumor segmentation. This study proposes an enhanced deep neural network approach, the 3D-Znet model, based on the variational autoencoder–autodecoder Znet method, for segmenting 3D MR (magnetic resonance) volumes. The 3D-Znet artificial neural network architecture relies on fully dense connections to enable the reuse of features on multiple levels to improve model performance. It consists of four encoders and four decoders along with the initial input and the final output blocks. Encoder–decoder blocks in the network include double convolutional 3D layers, 3D batch normalization, and an activation function. These are followed by size normalization between inputs and outputs and network concatenation across the encoding and decoding branches. The proposed deep convolutional neural network model was trained and validated using a multimodal stereotactic neuroimaging dataset (BraTS2020) that includes multimodal tumor masks. Evaluation of the pretrained model resulted in the following dice coefficient scores: Whole Tumor (WT) = 0.91, Tumor Core (TC) = 0.85, and Enhanced Tumor (ET) = 0.86. The performance of the proposed 3D-Znet method is comparable to other state-of-the-art methods. Our protocol demonstrates the importance of data augmentation to avoid overfitting and enhance model performance. MDPI 2023-05-11 /pmc/articles/PMC10215207/ /pubmed/37237652 http://dx.doi.org/10.3390/bioengineering10050581 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Ottom, Mohammad Ashraf
Abdul Rahman, Hanif
Alazzam, Iyad M.
Dinov, Ivo D.
Multimodal Stereotactic Brain Tumor Segmentation Using 3D-Znet
title Multimodal Stereotactic Brain Tumor Segmentation Using 3D-Znet
title_full Multimodal Stereotactic Brain Tumor Segmentation Using 3D-Znet
title_fullStr Multimodal Stereotactic Brain Tumor Segmentation Using 3D-Znet
title_full_unstemmed Multimodal Stereotactic Brain Tumor Segmentation Using 3D-Znet
title_short Multimodal Stereotactic Brain Tumor Segmentation Using 3D-Znet
title_sort multimodal stereotactic brain tumor segmentation using 3d-znet
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10215207/
https://www.ncbi.nlm.nih.gov/pubmed/37237652
http://dx.doi.org/10.3390/bioengineering10050581
work_keys_str_mv AT ottommohammadashraf multimodalstereotacticbraintumorsegmentationusing3dznet
AT abdulrahmanhanif multimodalstereotacticbraintumorsegmentationusing3dznet
AT alazzamiyadm multimodalstereotacticbraintumorsegmentationusing3dznet
AT dinovivod multimodalstereotacticbraintumorsegmentationusing3dznet