Cargando…
Multimodal Stereotactic Brain Tumor Segmentation Using 3D-Znet
Stereotactic brain tumor segmentation based on 3D neuroimaging data is a challenging task due to the complexity of the brain architecture, extreme heterogeneity of tumor malformations, and the extreme variability of intensity signal and noise distributions. Early tumor diagnosis can help medical pro...
Autores principales: | Ottom, Mohammad Ashraf, Abdul Rahman, Hanif, Alazzam, Iyad M., Dinov, Ivo D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10215207/ https://www.ncbi.nlm.nih.gov/pubmed/37237652 http://dx.doi.org/10.3390/bioengineering10050581 |
Ejemplares similares
-
Znet: Deep Learning Approach for 2D MRI Brain Tumor Segmentation
Publicado: (2022) -
Machine learning-based colorectal cancer prediction using global dietary data
por: Abdul Rahman, Hanif, et al.
Publicado: (2023) -
Prediction Modeling of Mental Well-Being Using Health Behavior Data of College Students
por: Rahman, Hanif Abdul, et al.
Publicado: (2022) -
Machine Learning-Based Prediction of Mental Well-Being Using Health Behavior Data from University Students
por: Abdul Rahman, Hanif, et al.
Publicado: (2023) -
ZnEt(2) as a Precatalyst for the Addition
of Alcohols to Carbodiimides
por: Ramos, Alberto, et al.
Publicado: (2022)