Cargando…
Exploiting Patch Sizes and Resolutions for Multi-Scale Deep Learning in Mammogram Image Classification
Recent progress in deep learning (DL) has revived the interest on DL-based computer aided detection or diagnosis (CAD) systems for breast cancer screening. Patch-based approaches are one of the main state-of-the-art techniques for 2D mammogram image classification, but they are intrinsically limited...
Autores principales: | Quintana, Gonzalo Iñaki, Li, Zhijin, Vancamberg, Laurence, Mougeot, Mathilde, Desolneux, Agnès, Muller, Serge |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10215225/ https://www.ncbi.nlm.nih.gov/pubmed/37237603 http://dx.doi.org/10.3390/bioengineering10050534 |
Ejemplares similares
-
Impact of image compression on deep learning-based mammogram classification
por: Jo, Yong-Yeon, et al.
Publicado: (2021) -
Inversion effects in the expert classification of mammograms and faces
por: Chin, Michael D., et al.
Publicado: (2018) -
Classification of breast tissue in mammograms using efficient coding
por: Costa, Daniel D, et al.
Publicado: (2011) -
Vision-Transformer-Based Transfer Learning for Mammogram Classification
por: Ayana, Gelan, et al.
Publicado: (2023) -
Performance Evaluation of Deep Learning Models on Mammogram Classification Using Small Dataset
por: Adedigba, Adeyinka P., et al.
Publicado: (2022)