Cargando…

Predicting Alcohol-Related Memory Problems in Older Adults: A Machine Learning Study with Multi-Domain Features

Memory problems are common among older adults with a history of alcohol use disorder (AUD). Employing a machine learning framework, the current study investigates the use of multi-domain features to classify individuals with and without alcohol-induced memory problems. A group of 94 individuals (age...

Descripción completa

Detalles Bibliográficos
Autores principales: Kamarajan, Chella, Pandey, Ashwini K., Chorlian, David B., Meyers, Jacquelyn L., Kinreich, Sivan, Pandey, Gayathri, Subbie-Saenz de Viteri, Stacey, Zhang, Jian, Kuang, Weipeng, Barr, Peter B., Aliev, Fazil, Anokhin, Andrey P., Plawecki, Martin H., Kuperman, Samuel, Almasy, Laura, Merikangas, Alison, Brislin, Sarah J., Bauer, Lance, Hesselbrock, Victor, Chan, Grace, Kramer, John, Lai, Dongbing, Hartz, Sarah, Bierut, Laura J., McCutcheon, Vivia V., Bucholz, Kathleen K., Dick, Danielle M., Schuckit, Marc A., Edenberg, Howard J., Porjesz, Bernice
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10215235/
https://www.ncbi.nlm.nih.gov/pubmed/37232664
http://dx.doi.org/10.3390/bs13050427
_version_ 1785048015663267840
author Kamarajan, Chella
Pandey, Ashwini K.
Chorlian, David B.
Meyers, Jacquelyn L.
Kinreich, Sivan
Pandey, Gayathri
Subbie-Saenz de Viteri, Stacey
Zhang, Jian
Kuang, Weipeng
Barr, Peter B.
Aliev, Fazil
Anokhin, Andrey P.
Plawecki, Martin H.
Kuperman, Samuel
Almasy, Laura
Merikangas, Alison
Brislin, Sarah J.
Bauer, Lance
Hesselbrock, Victor
Chan, Grace
Kramer, John
Lai, Dongbing
Hartz, Sarah
Bierut, Laura J.
McCutcheon, Vivia V.
Bucholz, Kathleen K.
Dick, Danielle M.
Schuckit, Marc A.
Edenberg, Howard J.
Porjesz, Bernice
author_facet Kamarajan, Chella
Pandey, Ashwini K.
Chorlian, David B.
Meyers, Jacquelyn L.
Kinreich, Sivan
Pandey, Gayathri
Subbie-Saenz de Viteri, Stacey
Zhang, Jian
Kuang, Weipeng
Barr, Peter B.
Aliev, Fazil
Anokhin, Andrey P.
Plawecki, Martin H.
Kuperman, Samuel
Almasy, Laura
Merikangas, Alison
Brislin, Sarah J.
Bauer, Lance
Hesselbrock, Victor
Chan, Grace
Kramer, John
Lai, Dongbing
Hartz, Sarah
Bierut, Laura J.
McCutcheon, Vivia V.
Bucholz, Kathleen K.
Dick, Danielle M.
Schuckit, Marc A.
Edenberg, Howard J.
Porjesz, Bernice
author_sort Kamarajan, Chella
collection PubMed
description Memory problems are common among older adults with a history of alcohol use disorder (AUD). Employing a machine learning framework, the current study investigates the use of multi-domain features to classify individuals with and without alcohol-induced memory problems. A group of 94 individuals (ages 50–81 years) with alcohol-induced memory problems (the memory group) were compared with a matched control group who did not have memory problems. The random forests model identified specific features from each domain that contributed to the classification of the memory group vs. the control group (AUC = 88.29%). Specifically, individuals from the memory group manifested a predominant pattern of hyperconnectivity across the default mode network regions except for some connections involving the anterior cingulate cortex, which were predominantly hypoconnected. Other significant contributing features were: (i) polygenic risk scores for AUD, (ii) alcohol consumption and related health consequences during the past five years, such as health problems, past negative experiences, withdrawal symptoms, and the largest number of drinks in a day during the past twelve months, and (iii) elevated neuroticism and increased harm avoidance, and fewer positive “uplift” life events. At the neural systems level, hyperconnectivity across the default mode network regions, including the connections across the hippocampal hub regions, in individuals with memory problems may indicate dysregulation in neural information processing. Overall, the study outlines the importance of utilizing multidomain features, consisting of resting-state brain connectivity data collected ~18 years ago, together with personality, life experiences, polygenic risk, and alcohol consumption and related consequences, to predict the alcohol-related memory problems that arise in later life.
format Online
Article
Text
id pubmed-10215235
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-102152352023-05-27 Predicting Alcohol-Related Memory Problems in Older Adults: A Machine Learning Study with Multi-Domain Features Kamarajan, Chella Pandey, Ashwini K. Chorlian, David B. Meyers, Jacquelyn L. Kinreich, Sivan Pandey, Gayathri Subbie-Saenz de Viteri, Stacey Zhang, Jian Kuang, Weipeng Barr, Peter B. Aliev, Fazil Anokhin, Andrey P. Plawecki, Martin H. Kuperman, Samuel Almasy, Laura Merikangas, Alison Brislin, Sarah J. Bauer, Lance Hesselbrock, Victor Chan, Grace Kramer, John Lai, Dongbing Hartz, Sarah Bierut, Laura J. McCutcheon, Vivia V. Bucholz, Kathleen K. Dick, Danielle M. Schuckit, Marc A. Edenberg, Howard J. Porjesz, Bernice Behav Sci (Basel) Article Memory problems are common among older adults with a history of alcohol use disorder (AUD). Employing a machine learning framework, the current study investigates the use of multi-domain features to classify individuals with and without alcohol-induced memory problems. A group of 94 individuals (ages 50–81 years) with alcohol-induced memory problems (the memory group) were compared with a matched control group who did not have memory problems. The random forests model identified specific features from each domain that contributed to the classification of the memory group vs. the control group (AUC = 88.29%). Specifically, individuals from the memory group manifested a predominant pattern of hyperconnectivity across the default mode network regions except for some connections involving the anterior cingulate cortex, which were predominantly hypoconnected. Other significant contributing features were: (i) polygenic risk scores for AUD, (ii) alcohol consumption and related health consequences during the past five years, such as health problems, past negative experiences, withdrawal symptoms, and the largest number of drinks in a day during the past twelve months, and (iii) elevated neuroticism and increased harm avoidance, and fewer positive “uplift” life events. At the neural systems level, hyperconnectivity across the default mode network regions, including the connections across the hippocampal hub regions, in individuals with memory problems may indicate dysregulation in neural information processing. Overall, the study outlines the importance of utilizing multidomain features, consisting of resting-state brain connectivity data collected ~18 years ago, together with personality, life experiences, polygenic risk, and alcohol consumption and related consequences, to predict the alcohol-related memory problems that arise in later life. MDPI 2023-05-18 /pmc/articles/PMC10215235/ /pubmed/37232664 http://dx.doi.org/10.3390/bs13050427 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kamarajan, Chella
Pandey, Ashwini K.
Chorlian, David B.
Meyers, Jacquelyn L.
Kinreich, Sivan
Pandey, Gayathri
Subbie-Saenz de Viteri, Stacey
Zhang, Jian
Kuang, Weipeng
Barr, Peter B.
Aliev, Fazil
Anokhin, Andrey P.
Plawecki, Martin H.
Kuperman, Samuel
Almasy, Laura
Merikangas, Alison
Brislin, Sarah J.
Bauer, Lance
Hesselbrock, Victor
Chan, Grace
Kramer, John
Lai, Dongbing
Hartz, Sarah
Bierut, Laura J.
McCutcheon, Vivia V.
Bucholz, Kathleen K.
Dick, Danielle M.
Schuckit, Marc A.
Edenberg, Howard J.
Porjesz, Bernice
Predicting Alcohol-Related Memory Problems in Older Adults: A Machine Learning Study with Multi-Domain Features
title Predicting Alcohol-Related Memory Problems in Older Adults: A Machine Learning Study with Multi-Domain Features
title_full Predicting Alcohol-Related Memory Problems in Older Adults: A Machine Learning Study with Multi-Domain Features
title_fullStr Predicting Alcohol-Related Memory Problems in Older Adults: A Machine Learning Study with Multi-Domain Features
title_full_unstemmed Predicting Alcohol-Related Memory Problems in Older Adults: A Machine Learning Study with Multi-Domain Features
title_short Predicting Alcohol-Related Memory Problems in Older Adults: A Machine Learning Study with Multi-Domain Features
title_sort predicting alcohol-related memory problems in older adults: a machine learning study with multi-domain features
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10215235/
https://www.ncbi.nlm.nih.gov/pubmed/37232664
http://dx.doi.org/10.3390/bs13050427
work_keys_str_mv AT kamarajanchella predictingalcoholrelatedmemoryproblemsinolderadultsamachinelearningstudywithmultidomainfeatures
AT pandeyashwinik predictingalcoholrelatedmemoryproblemsinolderadultsamachinelearningstudywithmultidomainfeatures
AT chorliandavidb predictingalcoholrelatedmemoryproblemsinolderadultsamachinelearningstudywithmultidomainfeatures
AT meyersjacquelynl predictingalcoholrelatedmemoryproblemsinolderadultsamachinelearningstudywithmultidomainfeatures
AT kinreichsivan predictingalcoholrelatedmemoryproblemsinolderadultsamachinelearningstudywithmultidomainfeatures
AT pandeygayathri predictingalcoholrelatedmemoryproblemsinolderadultsamachinelearningstudywithmultidomainfeatures
AT subbiesaenzdeviteristacey predictingalcoholrelatedmemoryproblemsinolderadultsamachinelearningstudywithmultidomainfeatures
AT zhangjian predictingalcoholrelatedmemoryproblemsinolderadultsamachinelearningstudywithmultidomainfeatures
AT kuangweipeng predictingalcoholrelatedmemoryproblemsinolderadultsamachinelearningstudywithmultidomainfeatures
AT barrpeterb predictingalcoholrelatedmemoryproblemsinolderadultsamachinelearningstudywithmultidomainfeatures
AT alievfazil predictingalcoholrelatedmemoryproblemsinolderadultsamachinelearningstudywithmultidomainfeatures
AT anokhinandreyp predictingalcoholrelatedmemoryproblemsinolderadultsamachinelearningstudywithmultidomainfeatures
AT plaweckimartinh predictingalcoholrelatedmemoryproblemsinolderadultsamachinelearningstudywithmultidomainfeatures
AT kupermansamuel predictingalcoholrelatedmemoryproblemsinolderadultsamachinelearningstudywithmultidomainfeatures
AT almasylaura predictingalcoholrelatedmemoryproblemsinolderadultsamachinelearningstudywithmultidomainfeatures
AT merikangasalison predictingalcoholrelatedmemoryproblemsinolderadultsamachinelearningstudywithmultidomainfeatures
AT brislinsarahj predictingalcoholrelatedmemoryproblemsinolderadultsamachinelearningstudywithmultidomainfeatures
AT bauerlance predictingalcoholrelatedmemoryproblemsinolderadultsamachinelearningstudywithmultidomainfeatures
AT hesselbrockvictor predictingalcoholrelatedmemoryproblemsinolderadultsamachinelearningstudywithmultidomainfeatures
AT changrace predictingalcoholrelatedmemoryproblemsinolderadultsamachinelearningstudywithmultidomainfeatures
AT kramerjohn predictingalcoholrelatedmemoryproblemsinolderadultsamachinelearningstudywithmultidomainfeatures
AT laidongbing predictingalcoholrelatedmemoryproblemsinolderadultsamachinelearningstudywithmultidomainfeatures
AT hartzsarah predictingalcoholrelatedmemoryproblemsinolderadultsamachinelearningstudywithmultidomainfeatures
AT bierutlauraj predictingalcoholrelatedmemoryproblemsinolderadultsamachinelearningstudywithmultidomainfeatures
AT mccutcheonviviav predictingalcoholrelatedmemoryproblemsinolderadultsamachinelearningstudywithmultidomainfeatures
AT bucholzkathleenk predictingalcoholrelatedmemoryproblemsinolderadultsamachinelearningstudywithmultidomainfeatures
AT dickdaniellem predictingalcoholrelatedmemoryproblemsinolderadultsamachinelearningstudywithmultidomainfeatures
AT schuckitmarca predictingalcoholrelatedmemoryproblemsinolderadultsamachinelearningstudywithmultidomainfeatures
AT edenberghowardj predictingalcoholrelatedmemoryproblemsinolderadultsamachinelearningstudywithmultidomainfeatures
AT porjeszbernice predictingalcoholrelatedmemoryproblemsinolderadultsamachinelearningstudywithmultidomainfeatures