Cargando…

Nisin Z Potential for the Control of Diabetic Foot Infections Promoted by Pseudomonas aeruginosa Persisters

Diabetic foot ulcers (DFU) are a major complication of diabetes mellitus and a public health concern worldwide. The ability of P. aeruginosa to form biofilms is a key factor responsible for the chronicity of diabetic foot infections (DFIs) and frequently associated with the presence of persister cel...

Descripción completa

Detalles Bibliográficos
Autores principales: Zina, Rafaela, Cunha, Eva, Serrano, Isa, Silva, Elisabete, Tavares, Luís, Oliveira, Manuela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10215260/
https://www.ncbi.nlm.nih.gov/pubmed/37237697
http://dx.doi.org/10.3390/antibiotics12050794
Descripción
Sumario:Diabetic foot ulcers (DFU) are a major complication of diabetes mellitus and a public health concern worldwide. The ability of P. aeruginosa to form biofilms is a key factor responsible for the chronicity of diabetic foot infections (DFIs) and frequently associated with the presence of persister cells. These are a subpopulation of phenotypic variants highly tolerant to antibiotics for which new therapeutic alternatives are urgently needed, such as those based on antimicrobial peptides. This study aimed to evaluate the inhibitory effect of nisin Z on P. aeruginosa DFI persisters. To induce the development of a persister state in both planktonic suspensions and biofilms, P. aeruginosa DFI isolates were exposed to carbonyl cyanide m-chlorophenylhydrazone (CCCP) and ciprofloxacin, respectively. After RNA extraction from CCCP-induced persisters, transcriptome analysis was performed to evaluate the differential gene expression between the control, persisters, and persister cells exposed to nisin Z. Nisin Z presented a high inhibitory effect against P. aeruginosa persister cells but was unable to eradicate them when present in established biofilms. Transcriptome analysis revealed that persistence was associated with downregulation of genes related to metabolic processes, cell wall synthesis, and dysregulation of stress response and biofilm formation. After nisin Z treatment, some of the transcriptomic changes induced by persistence were reversed. In conclusion, nisin Z could be considered as a potential complementary therapy for treating P. aeruginosa DFI, but it should be applied as an early treatment or after wound debridement.