Cargando…
Plasmid Costs Explain Plasmid Maintenance, Irrespective of the Nature of Compensatory Mutations
Conjugative plasmids often carry virulence and antibiotic-resistant genes. Therefore, understanding the behavior of these extra-chromosomal DNA elements gives insights into their spread. Bacteria frequently replicate slower after plasmids’ entry, an observation inconsistent with the plasmids’ ubiqui...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10215365/ https://www.ncbi.nlm.nih.gov/pubmed/37237742 http://dx.doi.org/10.3390/antibiotics12050841 |
Sumario: | Conjugative plasmids often carry virulence and antibiotic-resistant genes. Therefore, understanding the behavior of these extra-chromosomal DNA elements gives insights into their spread. Bacteria frequently replicate slower after plasmids’ entry, an observation inconsistent with the plasmids’ ubiquity in nature. Several hypotheses explain the maintenance of plasmids among bacterial communities. However, the numerous combinations of bacterial species and strains, plasmids, and environments claim a robust elucidatory mechanism of plasmid maintenance. Previous works have shown that donor cells already adapted to the plasmid may use the plasmid as a ‘weapon’ to compete with non-adapted plasmid-free cells. Computer simulations corroborated this hypothesis with a wide range of parameters. Here we show that donor cells benefit from harboring conjugative plasmids even if compensatory mutations in transconjugant cells occur in the plasmid, not on chromosomes. The advantage’s leading causes are as follows: mutations take time to appear, many plasmids remain costly, and re-transfer of mutated plasmids usually occurs in sites distant to the original donors, implying little competition between these cells. Research in previous decades cautioned against uncritical acceptance of the hypothesis that resistance cost helps to preserve antibiotics’ effectiveness. This work gives a new twist to this conclusion by showing that costs help antibiotic-resistant bacteria to compete with plasmid-free cells even if compensatory mutations appear in plasmids. |
---|