Cargando…
Automatic Multiple Articulator Segmentation in Dynamic Speech MRI Using a Protocol Adaptive Stacked Transfer Learning U-NET Model
Dynamic magnetic resonance imaging has emerged as a powerful modality for investigating upper-airway function during speech production. Analyzing the changes in the vocal tract airspace, including the position of soft-tissue articulators (e.g., the tongue and velum), enhances our understanding of sp...
Autores principales: | Erattakulangara, Subin, Kelat, Karthika, Meyer, David, Priya, Sarv, Lingala, Sajan Goud |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10215398/ https://www.ncbi.nlm.nih.gov/pubmed/37237693 http://dx.doi.org/10.3390/bioengineering10050623 |
Ejemplares similares
-
Speaker Adaptation on Articulation and Acoustics for Articulation-to-Speech Synthesis
por: Cao, Beiming, et al.
Publicado: (2022) -
Attention-augmented U-Net (AA-U-Net) for semantic segmentation
por: Rajamani, Kumar T., et al.
Publicado: (2022) -
DBT Masses Automatic Segmentation Using U-Net Neural Networks
por: Lai, Xiaobo, et al.
Publicado: (2020) -
Real-time speech MRI datasets with corresponding articulator ground-truth segmentations
por: Ruthven, Matthieu, et al.
Publicado: (2023) -
Nuclear Segmentation in Histopathological Images Using Two-Stage Stacked U-Nets With Attention Mechanism
por: Kong, Yan, et al.
Publicado: (2020)