Cargando…
Machine Learning and Explainable Artificial Intelligence Using Counterfactual Explanations for Evaluating Posture Parameters
Postural deficits such as hyperlordosis (hollow back) or hyperkyphosis (hunchback) are relevant health issues. Diagnoses depend on the experience of the examiner and are, therefore, often subjective and prone to errors. Machine learning (ML) methods in combination with explainable artificial intelli...
Autores principales: | Dindorf, Carlo, Ludwig, Oliver, Simon, Steven, Becker, Stephan, Fröhlich, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10215866/ https://www.ncbi.nlm.nih.gov/pubmed/37237581 http://dx.doi.org/10.3390/bioengineering10050511 |
Ejemplares similares
-
Classification and Automated Interpretation of Spinal Posture Data Using a Pathology-Independent Classifier and Explainable Artificial Intelligence (XAI)
por: Dindorf, Carlo, et al.
Publicado: (2021) -
Reference Values for Sagittal Clinical Posture Assessment in People Aged 10 to 69 Years
por: Ludwig, Oliver, et al.
Publicado: (2023) -
How people reason with counterfactual and causal explanations for Artificial Intelligence decisions in familiar and unfamiliar domains
por: Celar, Lenart, et al.
Publicado: (2023) -
Conceptual Structure and Current Trends in Artificial Intelligence, Machine Learning, and Deep Learning Research in Sports: A Bibliometric Review
por: Dindorf, Carlo, et al.
Publicado: (2022) -
Effects of Feedback-Supported Online Training during the Coronavirus Lockdown on Posture in Children and Adolescents
por: Ludwig, Oliver, et al.
Publicado: (2022)