Cargando…
MultiResUNet3+: A Full-Scale Connected Multi-Residual UNet Model to Denoise Electrooculogram and Electromyogram Artifacts from Corrupted Electroencephalogram Signals
Electroencephalogram (EEG) signals immensely suffer from several physiological artifacts, including electrooculogram (EOG), electromyogram (EMG), and electrocardiogram (ECG) artifacts, which must be removed to ensure EEG’s usability. This paper proposes a novel one-dimensional convolutional neural n...
Autores principales: | Hossain, Md Shafayet, Mahmud, Sakib, Khandakar, Amith, Al-Emadi, Nasser, Chowdhury, Farhana Ahmed, Mahbub, Zaid Bin, Reaz, Mamun Bin Ibne, Chowdhury, Muhammad E. H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10215884/ https://www.ncbi.nlm.nih.gov/pubmed/37237649 http://dx.doi.org/10.3390/bioengineering10050579 |
Ejemplares similares
-
Automatic Segmentation of Specific Intervertebral Discs through a Two-Stage MultiResUNet Model
por: Cheng, Yu-Kai, et al.
Publicado: (2021) -
TMD-Unet: Triple-Unet with Multi-Scale Input Features and Dense Skip Connection for Medical Image Segmentation
por: Tran, Song-Toan, et al.
Publicado: (2021) -
MID-UNet: Multi-input directional UNet for COVID-19 lung infection segmentation from CT images
por: Chi, Jianning, et al.
Publicado: (2022) -
C-UNet: Complement UNet for Remote Sensing Road Extraction
por: Hou, Yuewu, et al.
Publicado: (2021) -
TDD-UNet:Transformer with double decoder UNet for COVID-19 lesions segmentation
por: Huang, Xuping, et al.
Publicado: (2022)