Cargando…

Optimal Design of Array Coils for Multi-Target Adjustable Electromagnetic Brain Stimulation System

Temporal interference magnetic stimulation is a novel noninvasive deep brain neuromodulation technology that can solve the problem of balance between focus area and stimulation depth. However, at present, the stimulation target of this technology is relatively single, and it is difficult to realize...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Tingyu, Yan, Lele, Yang, Xinsheng, Geng, Duyan, Xu, Guizhi, Wang, Alan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10215902/
https://www.ncbi.nlm.nih.gov/pubmed/37237638
http://dx.doi.org/10.3390/bioengineering10050568
Descripción
Sumario:Temporal interference magnetic stimulation is a novel noninvasive deep brain neuromodulation technology that can solve the problem of balance between focus area and stimulation depth. However, at present, the stimulation target of this technology is relatively single, and it is difficult to realize the coordinated stimulation of multiple brain regions, which limits its application in the modulation of multiple nodes in the brain network. This paper first proposes a multi-target temporal interference magnetic stimulation system with array coils. The array coils are composed of seven coil units with an outer radius of 25 mm, and the spacing between coil units is 2 mm. Secondly, models of human tissue fluid and the human brain sphere are established. Finally, the relationship between the movement of the focus area and the amplitude ratio of the difference frequency excitation sources under time interference is discussed. The results show that in the case of a ratio of 1:5, the peak position of the amplitude modulation intensity of the induced electric field has moved 45 mm; that is, the movement of the focus area is related to the amplitude ratio of the difference frequency excitation sources. The conclusion is that multi-target temporal interference magnetic stimulation with array coils can simultaneously stimulate multiple network nodes in the brain region; rough positioning can be performed by controlling the conduction of different coils, fine-tuning the position by changing the current ratio of the conduction coils, and realizing accurate stimulation of multiple targets in the brain area.