Cargando…

Lightweight Visual Transformers Outperform Convolutional Neural Networks for Gram-Stained Image Classification: An Empirical Study

We aimed to automate Gram-stain analysis to speed up the detection of bacterial strains in patients suffering from infections. We performed comparative analyses of visual transformers (VT) using various configurations including model size (small vs. large), training epochs (1 vs. 100), and quantizat...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Hee E., Maros, Mate E., Miethke, Thomas, Kittel, Maximilian, Siegel, Fabian, Ganslandt, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10215960/
https://www.ncbi.nlm.nih.gov/pubmed/37239004
http://dx.doi.org/10.3390/biomedicines11051333
Descripción
Sumario:We aimed to automate Gram-stain analysis to speed up the detection of bacterial strains in patients suffering from infections. We performed comparative analyses of visual transformers (VT) using various configurations including model size (small vs. large), training epochs (1 vs. 100), and quantization schemes (tensor- or channel-wise) using float32 or int8 on publicly available (DIBaS, n = 660) and locally compiled (n = 8500) datasets. Six VT models (BEiT, DeiT, MobileViT, PoolFormer, Swin and ViT) were evaluated and compared to two convolutional neural networks (CNN), ResNet and ConvNeXT. The overall overview of performances including accuracy, inference time and model size was also visualized. Frames per second (FPS) of small models consistently surpassed their large counterparts by a factor of 1-2×. DeiT small was the fastest VT in int8 configuration (6.0 FPS). In conclusion, VTs consistently outperformed CNNs for Gram-stain classification in most settings even on smaller datasets.