Cargando…
Machine Learning Algorithms to Predict Breast Cancer Recurrence Using Structured and Unstructured Sources from Electronic Health Records
SIMPLE SUMMARY: Breast cancer is a heterogeneous disease characterized by different risks of relapse, which makes it challenging to predict progression and select the most appropriate follow-up strategies. With the ever-growing adoption of Electronic Health Records, there are great opportunities to...
Autores principales: | González-Castro, Lorena, Chávez, Marcela, Duflot, Patrick, Bleret, Valérie, Martin, Alistair G., Zobel, Marc, Nateqi, Jama, Lin, Simon, Pazos-Arias, José J., Del Fiol, Guilherme, López-Nores, Martín |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10216131/ https://www.ncbi.nlm.nih.gov/pubmed/37345078 http://dx.doi.org/10.3390/cancers15102741 |
Ejemplares similares
-
Correlating global trends in COVID-19 cases with online symptom checker self-assessments
por: Zobel, Marc, et al.
Publicado: (2023) -
An artificial intelligence-based first-line defence against COVID-19: digitally screening citizens for risks via a chatbot
por: Martin, Alistair, et al.
Publicado: (2020) -
Systematic Review of Electricity Demand Forecast Using ANN-Based Machine Learning Algorithms
por: Román-Portabales, Antón, et al.
Publicado: (2021) -
An artificial intelligence-based approach for identifying rare disease patients using retrospective electronic health records applied for Pompe disease
por: Lin, Simon, et al.
Publicado: (2023) -
Diagnostic Accuracy of Web-Based COVID-19 Symptom Checkers: Comparison Study
por: Munsch, Nicolas, et al.
Publicado: (2020)