Cargando…
A Semi-Supervised Speech Deception Detection Algorithm Combining Acoustic Statistical Features and Time-Frequency Two-Dimensional Features
Human lying is influenced by cognitive neural mechanisms in the brain, and conducting research on lie detection in speech can help to reveal the cognitive mechanisms of the human brain. Inappropriate deception detection features can easily lead to dimension disaster and make the generalization abili...
Autores principales: | Fu, Hongliang, Yu, Hang, Wang, Xuemei, Lu, Xiangying, Zhu, Chunhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10216231/ https://www.ncbi.nlm.nih.gov/pubmed/37239197 http://dx.doi.org/10.3390/brainsci13050725 |
Ejemplares similares
-
Improved semi-supervised autoencoder for deception detection
por: Fu, Hongliang, et al.
Publicado: (2019) -
Underwater Acoustic Target Recognition Based on Supervised Feature-Separation Algorithm
por: Ke, Xiaoquan, et al.
Publicado: (2018) -
Semi-Supervised Fuzzy Clustering with Feature Discrimination
por: Li, Longlong, et al.
Publicado: (2015) -
Simple strategies for semi-supervised feature selection
por: Sechidis, Konstantinos, et al.
Publicado: (2017) -
Using Voice Activity Detection and Deep Neural Networks with Hybrid Speech Feature Extraction for Deceptive Speech Detection †
por: Mihalache, Serban, et al.
Publicado: (2022)