Cargando…
Automatic Seizure Detection and Prediction Based on Brain Connectivity Features and a CNNs Meet Transformers Classifier
(1) Background: Epilepsy is a neurological disorder that causes repeated seizures. Since electroencephalogram (EEG) patterns differ in different states (inter-ictal, pre-ictal, and ictal), a seizure can be detected and predicted by extracting various features. However, the brain connectivity network...
Autores principales: | Tian, Ziwei, Hu, Bingliang, Si, Yang, Wang, Quan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10216314/ https://www.ncbi.nlm.nih.gov/pubmed/37239292 http://dx.doi.org/10.3390/brainsci13050820 |
Ejemplares similares
-
Computer-aided detection of COVID-19 from CT scans using an ensemble of CNNs and KSVM classifier
por: Abraham, Bejoy, et al.
Publicado: (2021) -
CNNs for automatic glaucoma assessment using fundus images: an extensive validation
por: Diaz-Pinto, Andres, et al.
Publicado: (2019) -
Matching-range-constrained real-time loop closure detection with CNNs features
por: Bai, Dongdong, et al.
Publicado: (2016) -
Multiscale CNNs for Brain Tumor Segmentation and Diagnosis
por: Zhao, Liya, et al.
Publicado: (2016) -
Crack Detection in Images of Masonry Using CNNs
por: Hallee, Mitchell J., et al.
Publicado: (2021)