Cargando…
The Role of Spermidine and Its Key Metabolites in Important, Pathogenic Human Viruses and in Parasitic Infections Caused by Plasmodium falciparum and Trypanosoma brucei
The triamine spermidine is a key metabolite of the polyamine pathway. It plays a crucial role in many infectious diseases caused by viral or parasitic infections. Spermidine and its metabolizing enzymes, i.e., spermidine/spermine-N(1)-acetyltransferase, spermine oxidase, acetyl polyamine oxidase, an...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10216422/ https://www.ncbi.nlm.nih.gov/pubmed/37238673 http://dx.doi.org/10.3390/biom13050803 |
_version_ | 1785048294284591104 |
---|---|
author | Kaiser, Annette |
author_facet | Kaiser, Annette |
author_sort | Kaiser, Annette |
collection | PubMed |
description | The triamine spermidine is a key metabolite of the polyamine pathway. It plays a crucial role in many infectious diseases caused by viral or parasitic infections. Spermidine and its metabolizing enzymes, i.e., spermidine/spermine-N(1)-acetyltransferase, spermine oxidase, acetyl polyamine oxidase, and deoxyhypusine synthase, fulfill common functions during infection in parasitic protozoa and viruses which are obligate, intracellular parasites. The competition for this important polyamine between the infected host cell and the pathogen determines the severity of infection in disabling human parasites and pathogenic viruses. Here, we review the impact of spermidine and its metabolites in disease development of the most important, pathogenic human viruses such as SARS-CoV-2, HIV, Ebola, and in the human parasites Plasmodium and Trypanosomes. Moreover, state-of-the-art translational approaches to manipulate spermidine metabolism in the host and the pathogen are discussed to accelerate drug development against these threatful, infectious human diseases. |
format | Online Article Text |
id | pubmed-10216422 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102164222023-05-27 The Role of Spermidine and Its Key Metabolites in Important, Pathogenic Human Viruses and in Parasitic Infections Caused by Plasmodium falciparum and Trypanosoma brucei Kaiser, Annette Biomolecules Review The triamine spermidine is a key metabolite of the polyamine pathway. It plays a crucial role in many infectious diseases caused by viral or parasitic infections. Spermidine and its metabolizing enzymes, i.e., spermidine/spermine-N(1)-acetyltransferase, spermine oxidase, acetyl polyamine oxidase, and deoxyhypusine synthase, fulfill common functions during infection in parasitic protozoa and viruses which are obligate, intracellular parasites. The competition for this important polyamine between the infected host cell and the pathogen determines the severity of infection in disabling human parasites and pathogenic viruses. Here, we review the impact of spermidine and its metabolites in disease development of the most important, pathogenic human viruses such as SARS-CoV-2, HIV, Ebola, and in the human parasites Plasmodium and Trypanosomes. Moreover, state-of-the-art translational approaches to manipulate spermidine metabolism in the host and the pathogen are discussed to accelerate drug development against these threatful, infectious human diseases. MDPI 2023-05-09 /pmc/articles/PMC10216422/ /pubmed/37238673 http://dx.doi.org/10.3390/biom13050803 Text en © 2023 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Kaiser, Annette The Role of Spermidine and Its Key Metabolites in Important, Pathogenic Human Viruses and in Parasitic Infections Caused by Plasmodium falciparum and Trypanosoma brucei |
title | The Role of Spermidine and Its Key Metabolites in Important, Pathogenic Human Viruses and in Parasitic Infections Caused by Plasmodium falciparum and Trypanosoma brucei |
title_full | The Role of Spermidine and Its Key Metabolites in Important, Pathogenic Human Viruses and in Parasitic Infections Caused by Plasmodium falciparum and Trypanosoma brucei |
title_fullStr | The Role of Spermidine and Its Key Metabolites in Important, Pathogenic Human Viruses and in Parasitic Infections Caused by Plasmodium falciparum and Trypanosoma brucei |
title_full_unstemmed | The Role of Spermidine and Its Key Metabolites in Important, Pathogenic Human Viruses and in Parasitic Infections Caused by Plasmodium falciparum and Trypanosoma brucei |
title_short | The Role of Spermidine and Its Key Metabolites in Important, Pathogenic Human Viruses and in Parasitic Infections Caused by Plasmodium falciparum and Trypanosoma brucei |
title_sort | role of spermidine and its key metabolites in important, pathogenic human viruses and in parasitic infections caused by plasmodium falciparum and trypanosoma brucei |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10216422/ https://www.ncbi.nlm.nih.gov/pubmed/37238673 http://dx.doi.org/10.3390/biom13050803 |
work_keys_str_mv | AT kaiserannette theroleofspermidineanditskeymetabolitesinimportantpathogenichumanvirusesandinparasiticinfectionscausedbyplasmodiumfalciparumandtrypanosomabrucei AT kaiserannette roleofspermidineanditskeymetabolitesinimportantpathogenichumanvirusesandinparasiticinfectionscausedbyplasmodiumfalciparumandtrypanosomabrucei |