Cargando…
Tissue Classification of Breast Cancer by Hyperspectral Unmixing
SIMPLE SUMMARY: To minimize the risk of cancer recurrence, it is crucial for surgeons to assess the resection margins (surface) of surgical specimens during breast-conserving surgeries to determine whether the tumor has been removed entirely. However, this is often not easy and also current techniqu...
Autores principales: | Jong, Lynn-Jade S., Post, Anouk L., Veluponnar, Dinusha, Geldof, Freija, Sterenborg, Henricus J. C. M., Ruers, Theo J. M., Dashtbozorg, Behdad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10216435/ https://www.ncbi.nlm.nih.gov/pubmed/37345015 http://dx.doi.org/10.3390/cancers15102679 |
Ejemplares similares
-
Layer thickness prediction and tissue classification in two-layered tissue structures using diffuse reflectance spectroscopy
por: Geldof, Freija, et al.
Publicado: (2022) -
Toward Intraoperative Margin Assessment Using a Deep Learning-Based Approach for Automatic Tumor Segmentation in Breast Lumpectomy Ultrasound Images
por: Veluponnar, Dinusha, et al.
Publicado: (2023) -
Comparison of preprocessing techniques to reduce nontissue-related variations in hyperspectral reflectance imaging
por: Witteveen, Mark, et al.
Publicado: (2022) -
Hyperspectral imaging for tissue classification, a way toward smart laparoscopic colorectal surgery
por: Baltussen, Elisabeth J. M., et al.
Publicado: (2019) -
Manifold regularization for sparse unmixing of hyperspectral images
por: Liu, Junmin, et al.
Publicado: (2016)