Cargando…

Live Cell Imaging of ATP Levels Reveals Metabolic Compartmentalization within Motoneurons and Early Metabolic Changes in FUS ALS Motoneurons

Motoneurons are one of the most energy-demanding cell types and a primary target in Amyotrophic lateral sclerosis (ALS), a debilitating and lethal neurodegenerative disorder without currently available effective treatments. Disruption of mitochondrial ultrastructure, transport, and metabolism is a c...

Descripción completa

Detalles Bibliográficos
Autores principales: Zimyanin, Vitaly L., Pielka, Anna-Maria, Glaß, Hannes, Japtok, Julia, Großmann, Dajana, Martin, Melanie, Deussen, Andreas, Szewczyk, Barbara, Deppmann, Chris, Zunder, Eli, Andersen, Peter M., Boeckers, Tobias M., Sterneckert, Jared, Redemann, Stefanie, Storch, Alexander, Hermann, Andreas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10216752/
https://www.ncbi.nlm.nih.gov/pubmed/37408187
http://dx.doi.org/10.3390/cells12101352
_version_ 1785048373442641920
author Zimyanin, Vitaly L.
Pielka, Anna-Maria
Glaß, Hannes
Japtok, Julia
Großmann, Dajana
Martin, Melanie
Deussen, Andreas
Szewczyk, Barbara
Deppmann, Chris
Zunder, Eli
Andersen, Peter M.
Boeckers, Tobias M.
Sterneckert, Jared
Redemann, Stefanie
Storch, Alexander
Hermann, Andreas
author_facet Zimyanin, Vitaly L.
Pielka, Anna-Maria
Glaß, Hannes
Japtok, Julia
Großmann, Dajana
Martin, Melanie
Deussen, Andreas
Szewczyk, Barbara
Deppmann, Chris
Zunder, Eli
Andersen, Peter M.
Boeckers, Tobias M.
Sterneckert, Jared
Redemann, Stefanie
Storch, Alexander
Hermann, Andreas
author_sort Zimyanin, Vitaly L.
collection PubMed
description Motoneurons are one of the most energy-demanding cell types and a primary target in Amyotrophic lateral sclerosis (ALS), a debilitating and lethal neurodegenerative disorder without currently available effective treatments. Disruption of mitochondrial ultrastructure, transport, and metabolism is a commonly reported phenotype in ALS models and can critically affect survival and the proper function of motor neurons. However, how changes in metabolic rates contribute to ALS progression is not fully understood yet. Here, we utilize hiPCS-derived motoneuron cultures and live imaging quantitative techniques to evaluate metabolic rates in fused in sarcoma (FUS)-ALS model cells. We show that differentiation and maturation of motoneurons are accompanied by an overall upregulation of mitochondrial components and a significant increase in metabolic rates that correspond to their high energy-demanding state. Detailed compartment-specific live measurements using a fluorescent ATP sensor and FLIM imaging show significantly lower levels of ATP in the somas of cells carrying FUS-ALS mutations. These changes lead to the increased vulnerability of diseased motoneurons to further metabolic challenges with mitochondrial inhibitors and could be due to the disruption of mitochondrial inner membrane integrity and an increase in its proton leakage. Furthermore, our measurements demonstrate heterogeneity between axonal and somatic compartments, with lower relative levels of ATP in axons. Our observations strongly support the hypothesis that mutated FUS impacts the metabolic states of motoneurons and makes them more susceptible to further neurodegenerative mechanisms.
format Online
Article
Text
id pubmed-10216752
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-102167522023-05-27 Live Cell Imaging of ATP Levels Reveals Metabolic Compartmentalization within Motoneurons and Early Metabolic Changes in FUS ALS Motoneurons Zimyanin, Vitaly L. Pielka, Anna-Maria Glaß, Hannes Japtok, Julia Großmann, Dajana Martin, Melanie Deussen, Andreas Szewczyk, Barbara Deppmann, Chris Zunder, Eli Andersen, Peter M. Boeckers, Tobias M. Sterneckert, Jared Redemann, Stefanie Storch, Alexander Hermann, Andreas Cells Article Motoneurons are one of the most energy-demanding cell types and a primary target in Amyotrophic lateral sclerosis (ALS), a debilitating and lethal neurodegenerative disorder without currently available effective treatments. Disruption of mitochondrial ultrastructure, transport, and metabolism is a commonly reported phenotype in ALS models and can critically affect survival and the proper function of motor neurons. However, how changes in metabolic rates contribute to ALS progression is not fully understood yet. Here, we utilize hiPCS-derived motoneuron cultures and live imaging quantitative techniques to evaluate metabolic rates in fused in sarcoma (FUS)-ALS model cells. We show that differentiation and maturation of motoneurons are accompanied by an overall upregulation of mitochondrial components and a significant increase in metabolic rates that correspond to their high energy-demanding state. Detailed compartment-specific live measurements using a fluorescent ATP sensor and FLIM imaging show significantly lower levels of ATP in the somas of cells carrying FUS-ALS mutations. These changes lead to the increased vulnerability of diseased motoneurons to further metabolic challenges with mitochondrial inhibitors and could be due to the disruption of mitochondrial inner membrane integrity and an increase in its proton leakage. Furthermore, our measurements demonstrate heterogeneity between axonal and somatic compartments, with lower relative levels of ATP in axons. Our observations strongly support the hypothesis that mutated FUS impacts the metabolic states of motoneurons and makes them more susceptible to further neurodegenerative mechanisms. MDPI 2023-05-09 /pmc/articles/PMC10216752/ /pubmed/37408187 http://dx.doi.org/10.3390/cells12101352 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zimyanin, Vitaly L.
Pielka, Anna-Maria
Glaß, Hannes
Japtok, Julia
Großmann, Dajana
Martin, Melanie
Deussen, Andreas
Szewczyk, Barbara
Deppmann, Chris
Zunder, Eli
Andersen, Peter M.
Boeckers, Tobias M.
Sterneckert, Jared
Redemann, Stefanie
Storch, Alexander
Hermann, Andreas
Live Cell Imaging of ATP Levels Reveals Metabolic Compartmentalization within Motoneurons and Early Metabolic Changes in FUS ALS Motoneurons
title Live Cell Imaging of ATP Levels Reveals Metabolic Compartmentalization within Motoneurons and Early Metabolic Changes in FUS ALS Motoneurons
title_full Live Cell Imaging of ATP Levels Reveals Metabolic Compartmentalization within Motoneurons and Early Metabolic Changes in FUS ALS Motoneurons
title_fullStr Live Cell Imaging of ATP Levels Reveals Metabolic Compartmentalization within Motoneurons and Early Metabolic Changes in FUS ALS Motoneurons
title_full_unstemmed Live Cell Imaging of ATP Levels Reveals Metabolic Compartmentalization within Motoneurons and Early Metabolic Changes in FUS ALS Motoneurons
title_short Live Cell Imaging of ATP Levels Reveals Metabolic Compartmentalization within Motoneurons and Early Metabolic Changes in FUS ALS Motoneurons
title_sort live cell imaging of atp levels reveals metabolic compartmentalization within motoneurons and early metabolic changes in fus als motoneurons
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10216752/
https://www.ncbi.nlm.nih.gov/pubmed/37408187
http://dx.doi.org/10.3390/cells12101352
work_keys_str_mv AT zimyaninvitalyl livecellimagingofatplevelsrevealsmetaboliccompartmentalizationwithinmotoneuronsandearlymetabolicchangesinfusalsmotoneurons
AT pielkaannamaria livecellimagingofatplevelsrevealsmetaboliccompartmentalizationwithinmotoneuronsandearlymetabolicchangesinfusalsmotoneurons
AT glaßhannes livecellimagingofatplevelsrevealsmetaboliccompartmentalizationwithinmotoneuronsandearlymetabolicchangesinfusalsmotoneurons
AT japtokjulia livecellimagingofatplevelsrevealsmetaboliccompartmentalizationwithinmotoneuronsandearlymetabolicchangesinfusalsmotoneurons
AT großmanndajana livecellimagingofatplevelsrevealsmetaboliccompartmentalizationwithinmotoneuronsandearlymetabolicchangesinfusalsmotoneurons
AT martinmelanie livecellimagingofatplevelsrevealsmetaboliccompartmentalizationwithinmotoneuronsandearlymetabolicchangesinfusalsmotoneurons
AT deussenandreas livecellimagingofatplevelsrevealsmetaboliccompartmentalizationwithinmotoneuronsandearlymetabolicchangesinfusalsmotoneurons
AT szewczykbarbara livecellimagingofatplevelsrevealsmetaboliccompartmentalizationwithinmotoneuronsandearlymetabolicchangesinfusalsmotoneurons
AT deppmannchris livecellimagingofatplevelsrevealsmetaboliccompartmentalizationwithinmotoneuronsandearlymetabolicchangesinfusalsmotoneurons
AT zundereli livecellimagingofatplevelsrevealsmetaboliccompartmentalizationwithinmotoneuronsandearlymetabolicchangesinfusalsmotoneurons
AT andersenpeterm livecellimagingofatplevelsrevealsmetaboliccompartmentalizationwithinmotoneuronsandearlymetabolicchangesinfusalsmotoneurons
AT boeckerstobiasm livecellimagingofatplevelsrevealsmetaboliccompartmentalizationwithinmotoneuronsandearlymetabolicchangesinfusalsmotoneurons
AT sterneckertjared livecellimagingofatplevelsrevealsmetaboliccompartmentalizationwithinmotoneuronsandearlymetabolicchangesinfusalsmotoneurons
AT redemannstefanie livecellimagingofatplevelsrevealsmetaboliccompartmentalizationwithinmotoneuronsandearlymetabolicchangesinfusalsmotoneurons
AT storchalexander livecellimagingofatplevelsrevealsmetaboliccompartmentalizationwithinmotoneuronsandearlymetabolicchangesinfusalsmotoneurons
AT hermannandreas livecellimagingofatplevelsrevealsmetaboliccompartmentalizationwithinmotoneuronsandearlymetabolicchangesinfusalsmotoneurons