Cargando…
Live Cell Imaging of ATP Levels Reveals Metabolic Compartmentalization within Motoneurons and Early Metabolic Changes in FUS ALS Motoneurons
Motoneurons are one of the most energy-demanding cell types and a primary target in Amyotrophic lateral sclerosis (ALS), a debilitating and lethal neurodegenerative disorder without currently available effective treatments. Disruption of mitochondrial ultrastructure, transport, and metabolism is a c...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10216752/ https://www.ncbi.nlm.nih.gov/pubmed/37408187 http://dx.doi.org/10.3390/cells12101352 |
_version_ | 1785048373442641920 |
---|---|
author | Zimyanin, Vitaly L. Pielka, Anna-Maria Glaß, Hannes Japtok, Julia Großmann, Dajana Martin, Melanie Deussen, Andreas Szewczyk, Barbara Deppmann, Chris Zunder, Eli Andersen, Peter M. Boeckers, Tobias M. Sterneckert, Jared Redemann, Stefanie Storch, Alexander Hermann, Andreas |
author_facet | Zimyanin, Vitaly L. Pielka, Anna-Maria Glaß, Hannes Japtok, Julia Großmann, Dajana Martin, Melanie Deussen, Andreas Szewczyk, Barbara Deppmann, Chris Zunder, Eli Andersen, Peter M. Boeckers, Tobias M. Sterneckert, Jared Redemann, Stefanie Storch, Alexander Hermann, Andreas |
author_sort | Zimyanin, Vitaly L. |
collection | PubMed |
description | Motoneurons are one of the most energy-demanding cell types and a primary target in Amyotrophic lateral sclerosis (ALS), a debilitating and lethal neurodegenerative disorder without currently available effective treatments. Disruption of mitochondrial ultrastructure, transport, and metabolism is a commonly reported phenotype in ALS models and can critically affect survival and the proper function of motor neurons. However, how changes in metabolic rates contribute to ALS progression is not fully understood yet. Here, we utilize hiPCS-derived motoneuron cultures and live imaging quantitative techniques to evaluate metabolic rates in fused in sarcoma (FUS)-ALS model cells. We show that differentiation and maturation of motoneurons are accompanied by an overall upregulation of mitochondrial components and a significant increase in metabolic rates that correspond to their high energy-demanding state. Detailed compartment-specific live measurements using a fluorescent ATP sensor and FLIM imaging show significantly lower levels of ATP in the somas of cells carrying FUS-ALS mutations. These changes lead to the increased vulnerability of diseased motoneurons to further metabolic challenges with mitochondrial inhibitors and could be due to the disruption of mitochondrial inner membrane integrity and an increase in its proton leakage. Furthermore, our measurements demonstrate heterogeneity between axonal and somatic compartments, with lower relative levels of ATP in axons. Our observations strongly support the hypothesis that mutated FUS impacts the metabolic states of motoneurons and makes them more susceptible to further neurodegenerative mechanisms. |
format | Online Article Text |
id | pubmed-10216752 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102167522023-05-27 Live Cell Imaging of ATP Levels Reveals Metabolic Compartmentalization within Motoneurons and Early Metabolic Changes in FUS ALS Motoneurons Zimyanin, Vitaly L. Pielka, Anna-Maria Glaß, Hannes Japtok, Julia Großmann, Dajana Martin, Melanie Deussen, Andreas Szewczyk, Barbara Deppmann, Chris Zunder, Eli Andersen, Peter M. Boeckers, Tobias M. Sterneckert, Jared Redemann, Stefanie Storch, Alexander Hermann, Andreas Cells Article Motoneurons are one of the most energy-demanding cell types and a primary target in Amyotrophic lateral sclerosis (ALS), a debilitating and lethal neurodegenerative disorder without currently available effective treatments. Disruption of mitochondrial ultrastructure, transport, and metabolism is a commonly reported phenotype in ALS models and can critically affect survival and the proper function of motor neurons. However, how changes in metabolic rates contribute to ALS progression is not fully understood yet. Here, we utilize hiPCS-derived motoneuron cultures and live imaging quantitative techniques to evaluate metabolic rates in fused in sarcoma (FUS)-ALS model cells. We show that differentiation and maturation of motoneurons are accompanied by an overall upregulation of mitochondrial components and a significant increase in metabolic rates that correspond to their high energy-demanding state. Detailed compartment-specific live measurements using a fluorescent ATP sensor and FLIM imaging show significantly lower levels of ATP in the somas of cells carrying FUS-ALS mutations. These changes lead to the increased vulnerability of diseased motoneurons to further metabolic challenges with mitochondrial inhibitors and could be due to the disruption of mitochondrial inner membrane integrity and an increase in its proton leakage. Furthermore, our measurements demonstrate heterogeneity between axonal and somatic compartments, with lower relative levels of ATP in axons. Our observations strongly support the hypothesis that mutated FUS impacts the metabolic states of motoneurons and makes them more susceptible to further neurodegenerative mechanisms. MDPI 2023-05-09 /pmc/articles/PMC10216752/ /pubmed/37408187 http://dx.doi.org/10.3390/cells12101352 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zimyanin, Vitaly L. Pielka, Anna-Maria Glaß, Hannes Japtok, Julia Großmann, Dajana Martin, Melanie Deussen, Andreas Szewczyk, Barbara Deppmann, Chris Zunder, Eli Andersen, Peter M. Boeckers, Tobias M. Sterneckert, Jared Redemann, Stefanie Storch, Alexander Hermann, Andreas Live Cell Imaging of ATP Levels Reveals Metabolic Compartmentalization within Motoneurons and Early Metabolic Changes in FUS ALS Motoneurons |
title | Live Cell Imaging of ATP Levels Reveals Metabolic Compartmentalization within Motoneurons and Early Metabolic Changes in FUS ALS Motoneurons |
title_full | Live Cell Imaging of ATP Levels Reveals Metabolic Compartmentalization within Motoneurons and Early Metabolic Changes in FUS ALS Motoneurons |
title_fullStr | Live Cell Imaging of ATP Levels Reveals Metabolic Compartmentalization within Motoneurons and Early Metabolic Changes in FUS ALS Motoneurons |
title_full_unstemmed | Live Cell Imaging of ATP Levels Reveals Metabolic Compartmentalization within Motoneurons and Early Metabolic Changes in FUS ALS Motoneurons |
title_short | Live Cell Imaging of ATP Levels Reveals Metabolic Compartmentalization within Motoneurons and Early Metabolic Changes in FUS ALS Motoneurons |
title_sort | live cell imaging of atp levels reveals metabolic compartmentalization within motoneurons and early metabolic changes in fus als motoneurons |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10216752/ https://www.ncbi.nlm.nih.gov/pubmed/37408187 http://dx.doi.org/10.3390/cells12101352 |
work_keys_str_mv | AT zimyaninvitalyl livecellimagingofatplevelsrevealsmetaboliccompartmentalizationwithinmotoneuronsandearlymetabolicchangesinfusalsmotoneurons AT pielkaannamaria livecellimagingofatplevelsrevealsmetaboliccompartmentalizationwithinmotoneuronsandearlymetabolicchangesinfusalsmotoneurons AT glaßhannes livecellimagingofatplevelsrevealsmetaboliccompartmentalizationwithinmotoneuronsandearlymetabolicchangesinfusalsmotoneurons AT japtokjulia livecellimagingofatplevelsrevealsmetaboliccompartmentalizationwithinmotoneuronsandearlymetabolicchangesinfusalsmotoneurons AT großmanndajana livecellimagingofatplevelsrevealsmetaboliccompartmentalizationwithinmotoneuronsandearlymetabolicchangesinfusalsmotoneurons AT martinmelanie livecellimagingofatplevelsrevealsmetaboliccompartmentalizationwithinmotoneuronsandearlymetabolicchangesinfusalsmotoneurons AT deussenandreas livecellimagingofatplevelsrevealsmetaboliccompartmentalizationwithinmotoneuronsandearlymetabolicchangesinfusalsmotoneurons AT szewczykbarbara livecellimagingofatplevelsrevealsmetaboliccompartmentalizationwithinmotoneuronsandearlymetabolicchangesinfusalsmotoneurons AT deppmannchris livecellimagingofatplevelsrevealsmetaboliccompartmentalizationwithinmotoneuronsandearlymetabolicchangesinfusalsmotoneurons AT zundereli livecellimagingofatplevelsrevealsmetaboliccompartmentalizationwithinmotoneuronsandearlymetabolicchangesinfusalsmotoneurons AT andersenpeterm livecellimagingofatplevelsrevealsmetaboliccompartmentalizationwithinmotoneuronsandearlymetabolicchangesinfusalsmotoneurons AT boeckerstobiasm livecellimagingofatplevelsrevealsmetaboliccompartmentalizationwithinmotoneuronsandearlymetabolicchangesinfusalsmotoneurons AT sterneckertjared livecellimagingofatplevelsrevealsmetaboliccompartmentalizationwithinmotoneuronsandearlymetabolicchangesinfusalsmotoneurons AT redemannstefanie livecellimagingofatplevelsrevealsmetaboliccompartmentalizationwithinmotoneuronsandearlymetabolicchangesinfusalsmotoneurons AT storchalexander livecellimagingofatplevelsrevealsmetaboliccompartmentalizationwithinmotoneuronsandearlymetabolicchangesinfusalsmotoneurons AT hermannandreas livecellimagingofatplevelsrevealsmetaboliccompartmentalizationwithinmotoneuronsandearlymetabolicchangesinfusalsmotoneurons |