Cargando…
Motif2Mol: Prediction of New Active Compounds Based on Sequence Motifs of Ligand Binding Sites in Proteins Using a Biochemical Language Model
In drug design, the prediction of new active compounds from protein sequence data has only been attempted in a few studies thus far. This prediction task is principally challenging because global protein sequence similarity has strong evolutional and structural implications, but is often only vaguel...
Autores principales: | Yoshimori, Atsushi, Bajorath, Jürgen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10216779/ https://www.ncbi.nlm.nih.gov/pubmed/37238703 http://dx.doi.org/10.3390/biom13050833 |
Ejemplares similares
-
SiteMotif: A graph-based algorithm for deriving structural motifs in Protein Ligand binding sites
por: Sankar, Santhosh, et al.
Publicado: (2022) -
Using structural motif descriptors for sequence-based binding site prediction
por: Henschel, Andreas, et al.
Publicado: (2007) -
RNANetMotif: Identifying sequence-structure RNA network motifs in RNA-protein binding sites
por: Ma, Hongli, et al.
Publicado: (2022) -
Adapting the DeepSARM approach for dual-target ligand design
por: Yoshimori, Atsushi, et al.
Publicado: (2021) -
The SAR Matrix Method and an Artificially Intelligent Variant for the Identification and Structural Organization of Analog Series, SAR Analysis, and Compound Design
por: Yoshimori, Atsushi, et al.
Publicado: (2020)