Cargando…
A Deep Learning Approach for Prognostic Evaluation of Lung Adenocarcinoma Based on Cuproptosis-Related Genes
Lung adenocarcinoma represents a significant global health challenge. Despite advances in diagnosis and treatment, the prognosis remains poor for many patients. In this study, we aimed to identify cuproptosis-related genes and to develop a deep neural network model to predict the prognosis of lung a...
Autores principales: | Liang, Pengchen, Chen, Jianguo, Yao, Lei, Hao, Zezhou, Chang, Qing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10216791/ https://www.ncbi.nlm.nih.gov/pubmed/37239150 http://dx.doi.org/10.3390/biomedicines11051479 |
Ejemplares similares
-
Immunoprognostic model of lung adenocarcinoma and screening of sensitive drugs
por: Liang, Pengchen, et al.
Publicado: (2022) -
Prognostic risk assessment model and drug sensitivity analysis of colon adenocarcinoma (COAD) based on immune-related lncRNA pairs
por: Hao, Zezhou, et al.
Publicado: (2022) -
Identification of cuproptosis and immune-related gene prognostic signature in lung adenocarcinoma
por: Zhang, Wentao, et al.
Publicado: (2023) -
Deep learning reveals cuproptosis features assist in predict prognosis and guide immunotherapy in lung adenocarcinoma
por: Li, Gang, et al.
Publicado: (2022) -
Establishment of a prognostic signature for lung adenocarcinoma using cuproptosis-related lncRNAs
por: Yalimaimaiti, Saiyidan, et al.
Publicado: (2023)