Cargando…
Distinguishing Parkinson’s Disease with GLCM Features from the Hankelization of EEG Signals
This study proposes a novel method that uses electroencephalography (EEG) signals to classify Parkinson’s Disease (PD) and demographically matched healthy control groups. The method utilizes the reduced beta activity and amplitude decrease in EEG signals that are associated with PD. The study involv...
Autores principales: | Karakaş, Mehmet Fatih, Latifoğlu, Fatma |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10216898/ https://www.ncbi.nlm.nih.gov/pubmed/37238253 http://dx.doi.org/10.3390/diagnostics13101769 |
Ejemplares similares
-
Time-Frequency Analysis of EEG Signals and GLCM Features for Depth of Anesthesia Monitoring
por: Mousavi, Seyed Mortaza, et al.
Publicado: (2021) -
Hankel operators and their applications
por: Peller, Vladimir
Publicado: (2003) -
An introduction to Hankel operators
por: Partington, Jonathan R
Publicado: (1989) -
Space-time POD and the Hankel matrix
por: Frame, Peter, et al.
Publicado: (2023) -
Hankel norm approximation for infinite-dimensional systems
por: Thoma, M, et al.
Publicado: (2002)