Cargando…
TSFN: A Novel Malicious Traffic Classification Method Using BERT and LSTM
Traffic classification is the first step in network anomaly detection and is essential to network security. However, existing malicious traffic classification methods have several limitations; for example, statistical-based methods are vulnerable to hand-designed features, and deep learning-based me...
Autores principales: | Shi, Zhaolei, Luktarhan, Nurbol, Song, Yangyang, Yin, Huixin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10216927/ https://www.ncbi.nlm.nih.gov/pubmed/37238576 http://dx.doi.org/10.3390/e25050821 |
Ejemplares similares
-
CLDTLog: System Log Anomaly Detection Method Based on Contrastive Learning and Dual Objective Tasks
por: Tian, Gaoqi, et al.
Publicado: (2023) -
BERT-Based Approaches to Identifying Malicious URLs
por: Su, Ming-Yang, et al.
Publicado: (2023) -
Research on sentiment classification for netizens based on the BERT-BiLSTM-TextCNN model
por: Jiang, Xuchu, et al.
Publicado: (2022) -
An Android Malware Detection Approach to Enhance Node Feature Differences in a Function Call Graph Based on GCNs
por: Wu, Haojie, et al.
Publicado: (2023) -
A Hybrid Analysis-Based Approach to Android Malware Family Classification
por: Ding, Chao, et al.
Publicado: (2021)