Cargando…
Identifying the Key Components in ResNet-50 for Diabetic Retinopathy Grading from Fundus Images: A Systematic Investigation
Although deep learning-based diabetic retinopathy (DR) classification methods typically benefit from well-designed architectures of convolutional neural networks, the training setting also has a non-negligible impact on prediction performance. The training setting includes various interdependent com...
Autores principales: | Huang, Yijin, Lin, Li, Cheng, Pujin, Lyu, Junyan, Tam, Roger, Tang, Xiaoying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10216935/ https://www.ncbi.nlm.nih.gov/pubmed/37238149 http://dx.doi.org/10.3390/diagnostics13101664 |
Ejemplares similares
-
Development of revised ResNet-50 for diabetic retinopathy detection
por: Lin, Chun-Ling, et al.
Publicado: (2023) -
Fundus image classification using Inception V3 and ResNet-50 for the early diagnostics of fundus diseases
por: Pan, Yuhang, et al.
Publicado: (2023) -
S-ResNet: An improved ResNet neural model capable of the identification of small insects
por: Wang, Pei, et al.
Publicado: (2022) -
ResNet-50 for 12-Lead Electrocardiogram Automated Diagnosis
por: Sakli, Nizar, et al.
Publicado: (2022) -
Severity Grading and Early Retinopathy Lesion Detection through Hybrid Inception-ResNet Architecture
por: Yasin, Sana, et al.
Publicado: (2021)