Cargando…

Towards Predicting Length of Stay and Identification of Cohort Risk Factors Using Self-Attention-Based Transformers and Association Mining: COVID-19 as a Phenotype

Predicting length of stay (LoS) and understanding its underlying factors is essential to minimizing the risk of hospital-acquired conditions, improving financial, operational, and clinical outcomes, and better managing future pandemics. The purpose of this study was to forecast patients’ LoS using a...

Descripción completa

Detalles Bibliográficos
Autores principales: Alam, Fakhare, Ananbeh, Obieda, Malik, Khalid Mahmood, Odayani, Abdulrahman Al, Hussain, Ibrahim Bin, Kaabia, Naoufel, Aidaroos, Amal Al, Saudagar, Abdul Khader Jilani
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10216944/
https://www.ncbi.nlm.nih.gov/pubmed/37238244
http://dx.doi.org/10.3390/diagnostics13101760

Ejemplares similares