Cargando…
Towards Predicting Length of Stay and Identification of Cohort Risk Factors Using Self-Attention-Based Transformers and Association Mining: COVID-19 as a Phenotype
Predicting length of stay (LoS) and understanding its underlying factors is essential to minimizing the risk of hospital-acquired conditions, improving financial, operational, and clinical outcomes, and better managing future pandemics. The purpose of this study was to forecast patients’ LoS using a...
Autores principales: | Alam, Fakhare, Ananbeh, Obieda, Malik, Khalid Mahmood, Odayani, Abdulrahman Al, Hussain, Ibrahim Bin, Kaabia, Naoufel, Aidaroos, Amal Al, Saudagar, Abdul Khader Jilani |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10216944/ https://www.ncbi.nlm.nih.gov/pubmed/37238244 http://dx.doi.org/10.3390/diagnostics13101760 |
Ejemplares similares
-
Chryseobacterium/Elizabethkingia species infections in Saudi Arabia
por: Alyami, Abdulaziz M., et al.
Publicado: (2020) -
Elizabethkingia meningoseptica (Chryseobacterium meningosepticum) bacteraemia: a series of 12 cases at Prince Sultan Military Medical City KSA
por: Aldoghaim, F.S., et al.
Publicado: (2019) -
Towards robust diagnosis of COVID-19 using vision self-attention transformer
por: Mehboob, Fozia, et al.
Publicado: (2022) -
Minimize the Percentage of Noise in Biomedical Images Using Neural Networks
por: Saudagar, Abdul Khader Jilani
Publicado: (2014) -
Clinical Context–Aware Biomedical Text Summarization Using Deep Neural Network: Model Development and Validation
por: Afzal, Muhammad, et al.
Publicado: (2020)