Cargando…
A Multi-Agent Deep Reinforcement Learning-Based Popular Content Distribution Scheme in Vehicular Networks
The Internet of Vehicles (IoV) enables vehicular data services and applications through vehicle-to-everything (V2X) communications. One of the key services provided by IoV is popular content distribution (PCD), which aims to quickly deliver popular content that most vehicles request. However, it is...
Autores principales: | Chen, Wenwei, Huang, Xiujie, Guan, Quanlong, Zhao, Shancheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10216958/ https://www.ncbi.nlm.nih.gov/pubmed/37238547 http://dx.doi.org/10.3390/e25050792 |
Ejemplares similares
-
Deep Reinforcement Learning for Edge Caching with Mobility Prediction in Vehicular Networks
por: Choi, Yoonjeong, et al.
Publicado: (2023) -
Deep reinforcement learning based offloading decision algorithm for vehicular edge computing
por: Hu, Xi, et al.
Publicado: (2022) -
Adaptive Content Precaching Scheme Based on the Predictive Speed of Vehicles in Content-Centric Vehicular Networks
por: Nam, Youngju, et al.
Publicado: (2021) -
Federated Deep Reinforcement Learning Based Task Offloading with Power Control in Vehicular Edge Computing
por: Moon, Sungwon, et al.
Publicado: (2022) -
Deep Reinforcement Learning-Based Coordinated Beamforming for mmWave Massive MIMO Vehicular Networks
por: Tarafder, Pulok, et al.
Publicado: (2023)