Cargando…

MSIA-Net: A Lightweight Infrared Target Detection Network with Efficient Information Fusion

In order to solve the problems of infrared target detection (i.e., the large models and numerous parameters), a lightweight detection network, MSIA-Net, is proposed. Firstly, a feature extraction module named MSIA, which is based on asymmetric convolution, is proposed, and it can greatly reduce the...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Jimin, Li, Shun, Zhou, Shangbo, Wang, Hui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10216973/
https://www.ncbi.nlm.nih.gov/pubmed/37238563
http://dx.doi.org/10.3390/e25050808
Descripción
Sumario:In order to solve the problems of infrared target detection (i.e., the large models and numerous parameters), a lightweight detection network, MSIA-Net, is proposed. Firstly, a feature extraction module named MSIA, which is based on asymmetric convolution, is proposed, and it can greatly reduce the number of parameters and improve the detection performance by reusing information. In addition, we propose a down-sampling module named DPP to reduce the information loss caused by pooling down-sampling. Finally, we propose a feature fusion structure named LIR-FPN that can shorten the information transmission path and effectively reduce the noise in the process of feature fusion. In order to improve the ability of the network to focus on the target, we introduce coordinate attention (CA) into the LIR-FPN; this integrates the location information of the target into the channel so as to obtain more expressive feature information. Finally, a comparative experiment with other SOTA methods was completed on the FLIR on-board infrared image dataset, which proved the powerful detection performance of MSIA-Net.