Cargando…

Sandpile Universality in Social Inequality: Gini and Kolkata Measures

Social inequalities are ubiquitous and evolve towards a universal limit. Herein, we extensively review the values of inequality measures, namely the Gini (g) index and the Kolkata (k) index, two standard measures of inequality used in the analysis of various social sectors through data analysis. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Banerjee, Suchismita, Biswas, Soumyajyoti, Chakrabarti, Bikas K., Ghosh, Asim, Mitra, Manipushpak
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10216978/
https://www.ncbi.nlm.nih.gov/pubmed/37238490
http://dx.doi.org/10.3390/e25050735
Descripción
Sumario:Social inequalities are ubiquitous and evolve towards a universal limit. Herein, we extensively review the values of inequality measures, namely the Gini (g) index and the Kolkata (k) index, two standard measures of inequality used in the analysis of various social sectors through data analysis. The Kolkata index, denoted as k, indicates the proportion of the ‘wealth’ owned by [Formula: see text] fraction of the ‘people’. Our findings suggest that both the Gini index and the Kolkata index tend to converge to similar values (around [Formula: see text] , starting from the point of perfect equality, where [Formula: see text] and [Formula: see text]) as competition increases in different social institutions, such as markets, movies, elections, universities, prize winning, battle fields, sports (Olympics), etc., under conditions of unrestricted competition (no social welfare or support mechanism). In this review, we present the concept of a generalized form of Pareto’s 80/20 law ([Formula: see text]), where the coincidence of inequality indices is observed. The observation of this coincidence is consistent with the precursor values of the g and k indices for the self-organized critical (SOC) state in self-tuned physical systems such as sand piles. These results provide quantitative support for the view that interacting socioeconomic systems can be understood within the framework of SOC, which has been hypothesized for many years. These findings suggest that the SOC model can be extended to capture the dynamics of complex socioeconomic systems and help us better understand their behavior.