Cargando…
Histopathological Gastric Cancer Detection on GasHisSDB Dataset Using Deep Ensemble Learning
Gastric cancer is a leading cause of cancer-related deaths worldwide, underscoring the need for early detection to improve patient survival rates. The current clinical gold standard for detection is histopathological image analysis, but this process is manual, laborious, and time-consuming. As a res...
Autores principales: | Yong, Ming Ping, Hum, Yan Chai, Lai, Khin Wee, Lee, Ying Loong, Goh, Choon-Hian, Yap, Wun-She, Tee, Yee Kai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217020/ https://www.ncbi.nlm.nih.gov/pubmed/37238277 http://dx.doi.org/10.3390/diagnostics13101793 |
Ejemplares similares
-
Non-annotated renal histopathological image analysis with deep ensemble learning
por: Koo, Jia Chun, et al.
Publicado: (2023) -
Evaluating the effectiveness of stain normalization techniques in automated grading of invasive ductal carcinoma histopathological images
por: Voon, Wingates, et al.
Publicado: (2023) -
Performance analysis of seven Convolutional Neural Networks (CNNs) with transfer learning for Invasive Ductal Carcinoma (IDC) grading in breast histopathological images
por: Voon, Wingates, et al.
Publicado: (2022) -
Passive sampler phases for pesticides: evaluation of AttractSPE™ SDB-RPS and HLB versus Empore™ SDB-RPS
por: Becker, Benjamin, et al.
Publicado: (2021) -
Proper motions of the hot subdwarfs: the kinematic population membership of the sdB
por: Thejll, P A, et al.
Publicado: (1996)