Cargando…
Few Shot Class Incremental Learning via Efficient Prototype Replay and Calibration
Few shot class incremental learning (FSCIL) is an extremely challenging but valuable problem in real-world applications. When faced with novel few shot tasks in each incremental stage, it should take into account both catastrophic forgetting of old knowledge and overfitting of new categories with li...
Autores principales: | Zhang, Wei, Gu, Xiaodong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217101/ https://www.ncbi.nlm.nih.gov/pubmed/37238532 http://dx.doi.org/10.3390/e25050776 |
Ejemplares similares
-
A Bio-Inspired Spiking Neural Network with Few-Shot Class-Incremental Learning for Gas Recognition
por: Huo, Dexuan, et al.
Publicado: (2023) -
Knowledge-enhanced prototypical network with class cluster loss for few-shot relation classification
por: Liu, Tao, et al.
Publicado: (2023) -
CLIP-Driven Prototype Network for Few-Shot Semantic Segmentation
por: Guo, Shi-Cheng, et al.
Publicado: (2023) -
FS-RSDD: Few-Shot Rail Surface Defect Detection with Prototype Learning
por: Min, Yongzhi, et al.
Publicado: (2023) -
Efficient few-shot machine learning for classification of EBSD patterns
por: Kaufmann, Kevin, et al.
Publicado: (2021)