Cargando…
Causality Analysis with Information Geometry: A Comparison
The quantification of causality is vital for understanding various important phenomena in nature and laboratories, such as brain networks, environmental dynamics, and pathologies. The two most widely used methods for measuring causality are Granger Causality (GC) and Transfer Entropy (TE), which rel...
Autores principales: | Choong, Heng Jie, Kim, Eun-jin, He, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217183/ https://www.ncbi.nlm.nih.gov/pubmed/37238561 http://dx.doi.org/10.3390/e25050806 |
Ejemplares similares
-
On Geometry of Information Flow for Causal Inference
por: Surasinghe, Sudam, et al.
Publicado: (2020) -
Causal Geometry
por: Chvykov, Pavel, et al.
Publicado: (2020) -
Causal Information Rate
por: Kim, Eun-jin, et al.
Publicado: (2021) -
Information Geometry of Nonlinear Stochastic Systems
por: Hollerbach, Rainer, et al.
Publicado: (2018) -
Investigating Information Geometry in Classical and Quantum Systems through Information Length
por: Kim, Eun-jin
Publicado: (2018)