Cargando…
TTANAD: Test-Time Augmentation for Network Anomaly Detection
Machine learning-based Network Intrusion Detection Systems (NIDS) are designed to protect networks by identifying anomalous behaviors or improper uses. In recent years, advanced attacks, such as those mimicking legitimate traffic, have been developed to avoid alerting such systems. Previous works ma...
Autores principales: | Cohen, Seffi, Goldshlager, Niv, Shapira, Bracha, Rokach, Lior |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217189/ https://www.ncbi.nlm.nih.gov/pubmed/37238575 http://dx.doi.org/10.3390/e25050820 |
Ejemplares similares
-
Detecting drug-drug interactions using artificial neural networks and classic graph similarity measures
por: Shtar, Guy, et al.
Publicado: (2019) -
Using Bandits for Effective Database Activity Monitoring
por: Grushka-Cohen, Hagit, et al.
Publicado: (2020) -
Molecule generation using transformers and policy gradient reinforcement learning
por: Mazuz, Eyal, et al.
Publicado: (2023) -
A simplified similarity-based approach for drug-drug interaction prediction
por: Shtar, Guy, et al.
Publicado: (2023) -
Pretrained transformer models for predicting the withdrawal of drugs from the market
por: Mazuz, Eyal, et al.
Publicado: (2023)