Cargando…
A Novel ECG Signal Denoising Algorithm Based on Sparrow Search Algorithm for Optimal Variational Modal Decomposition
ECG signal processing is an important basis for the prevention and diagnosis of cardiovascular diseases; however, the signal is susceptible to noise interference mixed with equipment, environmental influences, and transmission processes. In this paper, an efficient denoising method based on the vari...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217261/ https://www.ncbi.nlm.nih.gov/pubmed/37238530 http://dx.doi.org/10.3390/e25050775 |
Sumario: | ECG signal processing is an important basis for the prevention and diagnosis of cardiovascular diseases; however, the signal is susceptible to noise interference mixed with equipment, environmental influences, and transmission processes. In this paper, an efficient denoising method based on the variational modal decomposition (VMD) algorithm combined with and optimized by the sparrow search algorithm (SSA) and singular value decomposition (SVD) algorithm, named VMD–SSA–SVD, is proposed for the first time and applied to the noise reduction of ECG signals. SSA is used to find the optimal combination of parameters of VMD [[Formula: see text] , [Formula: see text]], VMD–SSA decomposes the signal to obtain finite modal components, and the components containing baseline drift are eliminated by the mean value criterion. Then, the effective modalities are obtained in the remaining components using the mutual relation number method, and each effective modal is processed by SVD noise reduction and reconstructed separately to finally obtain a clean ECG signal. In order to verify the effectiveness, the methods proposed are compared and analyzed with wavelet packet decomposition, empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD), and the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) algorithm. The results show that the noise reduction effect of the VMD–SSA–SVD algorithm proposed is the most significant, and that it can suppress the noise and remove the baseline drift interference at the same time, and effectively retain the morphological characteristics of the ECG signals. |
---|