Cargando…
Yam Bean (Pachyrhizus erosus L. Urban) Powder Improves Grass Carp Myofibrillar Protein Gel by Forming Disulfide Bonds, Hydrogen Bonds, and Proper Microstructure
This study aimed to analyze the impact of different additions (0–1.25%) of yam bean powder (YBP) on myofibrillar protein (MP) gel characteristics such as the structure, water-holding capacity (WHC), chemical interaction strength of grass carp MP, and texture. The results showed that the YBP exhibite...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217281/ https://www.ncbi.nlm.nih.gov/pubmed/37238889 http://dx.doi.org/10.3390/foods12102072 |
Sumario: | This study aimed to analyze the impact of different additions (0–1.25%) of yam bean powder (YBP) on myofibrillar protein (MP) gel characteristics such as the structure, water-holding capacity (WHC), chemical interaction strength of grass carp MP, and texture. The results showed that the YBP exhibited a strong water absorption capacity and filled in the protein heat-induced polymerization gel network well, which enabled the gel network to capture and retain water effectively, resulting in MP gels containing YBP with excellent WHC and gel strength (0.75%). In addition, YBP induced the formation of hydrogen and disulfide bonds in proteins and inhibited the conversion of α-helices to β-sheets and β-turn structures, facilitating the formation of high-strength gel networks (p < 0.05). In conclusion, YBP can significantly improve the thermally induced gelling properties of grass carp MP. In particular, the addition of 0.75% YBP had the best effect in terms of filling the gel network of grass carp MP, resulting in the formation of a continuous and dense protein network, leading to the composite gel with the best WHC and texture. |
---|