Cargando…
Reviewing Evolution of Learning Functions and Semantic Information Measures for Understanding Deep Learning
A new trend in deep learning, represented by Mutual Information Neural Estimation (MINE) and Information Noise Contrast Estimation (InfoNCE), is emerging. In this trend, similarity functions and Estimated Mutual Information (EMI) are used as learning and objective functions. Coincidentally, EMI is e...
Autor principal: | Lu, Chenguang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217299/ https://www.ncbi.nlm.nih.gov/pubmed/37238557 http://dx.doi.org/10.3390/e25050802 |
Ejemplares similares
-
Using the Semantic Information G Measure to Explain and Extend Rate-Distortion Functions and Maximum Entropy Distributions
por: Lu, Chenguang
Publicado: (2021) -
How deep learning is empowering semantic segmentation: Traditional and deep learning techniques for semantic segmentation: A comparison
por: Sehar, Uroosa, et al.
Publicado: (2022) -
Computing semantic similarity of texts based on deep graph learning with ability to use semantic role label information
por: Mohebbi, Majid, et al.
Publicado: (2022) -
Orchard Mapping with Deep Learning Semantic Segmentation
por: Anagnostis, Athanasios, et al.
Publicado: (2021) -
Leveraging deep contrastive learning for semantic interaction
por: Belcaid, Mahdi, et al.
Publicado: (2022)