Cargando…
Feasibility Study of Combining Hyperspectral Imaging with Deep Learning for Chestnut-Quality Detection
The rapid detection of chestnut quality is a critical aspect of chestnut processing. However, traditional imaging methods pose a challenge for chestnut-quality detection due to the absence of visible epidermis symptoms. This study aims to develop a quick and efficient detection method using hyperspe...
Autores principales: | Zhong, Qiongda, Zhang, Hu, Tang, Shuqi, Li, Peng, Lin, Caixia, Zhang, Ling, Zhong, Nan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217303/ https://www.ncbi.nlm.nih.gov/pubmed/37238907 http://dx.doi.org/10.3390/foods12102089 |
Ejemplares similares
-
Identification of Defective Maize Seeds Using Hyperspectral Imaging Combined with Deep Learning
por: Xu, Peng, et al.
Publicado: (2022) -
Detection of Oil Chestnuts Infected by Blue Mold Using Near-Infrared Hyperspectral Imaging Combined with Artificial Neural Networks
por: Feng, Lei, et al.
Publicado: (2018) -
Hyperspectral Imaging Combined With Deep Transfer Learning for Rice Disease Detection
por: Feng, Lei, et al.
Publicado: (2021) -
Identification of Rice Seed Varieties Based on Near-Infrared
Hyperspectral Imaging Technology Combined with Deep Learning
por: Jin, Baichuan, et al.
Publicado: (2022) -
Deep Learning Combined with Hyperspectral Imaging Technology for Variety Discrimination of Fritillaria thunbergii
por: Kabir, Muhammad Hilal, et al.
Publicado: (2022)