Cargando…
Sodium Salt of Partially Carboxymethylated Sodium Alginate-g-Poly(acrylonitrile): I. Photo-Induced Synthesis, Characterization, and Alkaline Hydrolysis
An efficient redox initiating system, ceric ammonium nitrate/nitric acid, has been employed for the first time to carry out photo-induced graft copolymerization of acrylonitrile (AN) onto sodium salt of partially carboxymethylated sodium alginate, having an average degree of substitution value to be...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217332/ https://www.ncbi.nlm.nih.gov/pubmed/37233002 http://dx.doi.org/10.3390/gels9050410 |
_version_ | 1785048511266422784 |
---|---|
author | Trivedi, Jignesh Chourasia, Arvind |
author_facet | Trivedi, Jignesh Chourasia, Arvind |
author_sort | Trivedi, Jignesh |
collection | PubMed |
description | An efficient redox initiating system, ceric ammonium nitrate/nitric acid, has been employed for the first time to carry out photo-induced graft copolymerization of acrylonitrile (AN) onto sodium salt of partially carboxymethylated sodium alginate, having an average degree of substitution value to be 1.10. The photo-grafting reaction conditions for maximum grafting have been systematically optimized by varying the reaction variables such as reaction time, temperature, the concentration of acrylonitrile monomer, ceric ammonium nitrate, and nitric acid, as well as the amount of the backbone. The optimum reaction conditions are obtained with a reaction time of 4 h, reaction temperature of 30 °C, acrylonitrile monomer concentration of 0.152 mol/L, initiator concentration of 5 × 10(−3) mol/L, nitric acid concentration of 0.20 mol/L, amount of backbone of 0.20 (dry basis) and the total volume of the reaction system of 150 mL. The highest percentage of grafting (%G) and grafting efficiency (%GE) achieved are 316.53% and 99.31%, respectively. The optimally prepared graft copolymer, sodium salt of partially carboxymethylated sodium alginate-g-polyacrylonitrile (%G = 316.53), has been hydrolyzed in an alkaline medium (0.7N NaOH, 90–95 °C for ~2.5 h) to obtain the superabsorbent hydrogel, H–Na–PCMSA–g–PAN. The chemical structure, thermal characteristics, and morphology of the products have also been studied. |
format | Online Article Text |
id | pubmed-10217332 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102173322023-05-27 Sodium Salt of Partially Carboxymethylated Sodium Alginate-g-Poly(acrylonitrile): I. Photo-Induced Synthesis, Characterization, and Alkaline Hydrolysis Trivedi, Jignesh Chourasia, Arvind Gels Article An efficient redox initiating system, ceric ammonium nitrate/nitric acid, has been employed for the first time to carry out photo-induced graft copolymerization of acrylonitrile (AN) onto sodium salt of partially carboxymethylated sodium alginate, having an average degree of substitution value to be 1.10. The photo-grafting reaction conditions for maximum grafting have been systematically optimized by varying the reaction variables such as reaction time, temperature, the concentration of acrylonitrile monomer, ceric ammonium nitrate, and nitric acid, as well as the amount of the backbone. The optimum reaction conditions are obtained with a reaction time of 4 h, reaction temperature of 30 °C, acrylonitrile monomer concentration of 0.152 mol/L, initiator concentration of 5 × 10(−3) mol/L, nitric acid concentration of 0.20 mol/L, amount of backbone of 0.20 (dry basis) and the total volume of the reaction system of 150 mL. The highest percentage of grafting (%G) and grafting efficiency (%GE) achieved are 316.53% and 99.31%, respectively. The optimally prepared graft copolymer, sodium salt of partially carboxymethylated sodium alginate-g-polyacrylonitrile (%G = 316.53), has been hydrolyzed in an alkaline medium (0.7N NaOH, 90–95 °C for ~2.5 h) to obtain the superabsorbent hydrogel, H–Na–PCMSA–g–PAN. The chemical structure, thermal characteristics, and morphology of the products have also been studied. MDPI 2023-05-15 /pmc/articles/PMC10217332/ /pubmed/37233002 http://dx.doi.org/10.3390/gels9050410 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Trivedi, Jignesh Chourasia, Arvind Sodium Salt of Partially Carboxymethylated Sodium Alginate-g-Poly(acrylonitrile): I. Photo-Induced Synthesis, Characterization, and Alkaline Hydrolysis |
title | Sodium Salt of Partially Carboxymethylated Sodium Alginate-g-Poly(acrylonitrile): I. Photo-Induced Synthesis, Characterization, and Alkaline Hydrolysis |
title_full | Sodium Salt of Partially Carboxymethylated Sodium Alginate-g-Poly(acrylonitrile): I. Photo-Induced Synthesis, Characterization, and Alkaline Hydrolysis |
title_fullStr | Sodium Salt of Partially Carboxymethylated Sodium Alginate-g-Poly(acrylonitrile): I. Photo-Induced Synthesis, Characterization, and Alkaline Hydrolysis |
title_full_unstemmed | Sodium Salt of Partially Carboxymethylated Sodium Alginate-g-Poly(acrylonitrile): I. Photo-Induced Synthesis, Characterization, and Alkaline Hydrolysis |
title_short | Sodium Salt of Partially Carboxymethylated Sodium Alginate-g-Poly(acrylonitrile): I. Photo-Induced Synthesis, Characterization, and Alkaline Hydrolysis |
title_sort | sodium salt of partially carboxymethylated sodium alginate-g-poly(acrylonitrile): i. photo-induced synthesis, characterization, and alkaline hydrolysis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217332/ https://www.ncbi.nlm.nih.gov/pubmed/37233002 http://dx.doi.org/10.3390/gels9050410 |
work_keys_str_mv | AT trivedijignesh sodiumsaltofpartiallycarboxymethylatedsodiumalginategpolyacrylonitrileiphotoinducedsynthesischaracterizationandalkalinehydrolysis AT chourasiaarvind sodiumsaltofpartiallycarboxymethylatedsodiumalginategpolyacrylonitrileiphotoinducedsynthesischaracterizationandalkalinehydrolysis |