Cargando…
Cross-Linked Gel Polymer Electrolyte Based on Multiple Epoxy Groups Enabling Conductivity and High Performance of Li-Ion Batteries
The low ionic conductivity and unstable interface of electrolytes/electrodes are the key issues hindering the application progress of lithium-ion batteries (LiBs). In this work, a cross-linked gel polymer electrolyte (C-GPE) based on epoxidized soybean oil (ESO) was synthesized by in situ thermal po...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217423/ https://www.ncbi.nlm.nih.gov/pubmed/37232976 http://dx.doi.org/10.3390/gels9050384 |
Sumario: | The low ionic conductivity and unstable interface of electrolytes/electrodes are the key issues hindering the application progress of lithium-ion batteries (LiBs). In this work, a cross-linked gel polymer electrolyte (C-GPE) based on epoxidized soybean oil (ESO) was synthesized by in situ thermal polymerization using lithium bis(fluorosulfonyl)imide (LiFSI) as an initiator. Ethylene carbonate/diethylene carbonate (EC/DEC) was beneficial for the distribution of the as-prepared C-GPE on the anode surface and the dissociation ability of LiFSI. The resulting C-GPE-2 exhibited a wide electrochemical window (of up to 5.19 V vs. Li(+)/Li), an ionic conductivity (σ) of 0.23 × 10(−3) S/cm at 30 °C, a super-low glass transition temperature (T(g)), and good interfacial stability between the electrodes and electrolyte. The battery performance of the as-prepared C-GPE-2 based on a graphite/LiFePO(4) cell showed a high specific capacity of ca. 161.3 mAh/g (an initial Coulombic efficiency (CE) of ca. 98.4%) with a capacity retention rate of ca. 98.5% after 50 cycles at 0.1 C and an average CE of about ca. 98.04% at an operating voltage range of 2.0~4.2 V. This work provides a reference for designing cross-linking gel polymer electrolytes with high ionic conductivity, facilitating the practical application of high-performance LiBs. |
---|