Cargando…
Prediction of Cognitive Decline in Parkinson’s Disease Using Clinical and DAT SPECT Imaging Features, and Hybrid Machine Learning Systems
Background: We aimed to predict Montreal Cognitive Assessment (MoCA) scores in Parkinson’s disease patients at year 4 using handcrafted radiomics (RF), deep (DF), and clinical (CF) features at year 0 (baseline) applied to hybrid machine learning systems (HMLSs). Methods: 297 patients were selected f...
Autores principales: | Hosseinzadeh, Mahdi, Gorji, Arman, Fathi Jouzdani, Ali, Rezaeijo, Seyed Masoud, Rahmim, Arman, Salmanpour, Mohammad R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217464/ https://www.ncbi.nlm.nih.gov/pubmed/37238175 http://dx.doi.org/10.3390/diagnostics13101691 |
Ejemplares similares
-
Deep versus Handcrafted Tensor Radiomics Features: Prediction of Survival in Head and Neck Cancer Using Machine Learning and Fusion Techniques
por: Salmanpour, Mohammad R., et al.
Publicado: (2023) -
Improved prediction of outcome in Parkinson's disease using radiomics analysis of longitudinal DAT SPECT images
por: Rahmim, Arman, et al.
Publicado: (2017) -
Application of texture analysis to DAT SPECT imaging: Relationship to clinical assessments
por: Rahmim, Arman, et al.
Publicado: (2016) -
Negative DAT‐SPECT in Old Onset Parkinson's Disease: An Additional Pitfall?
por: Palermo, Giovanni, et al.
Publicado: (2022) -
Neuromelanin or DaT‐SPECT: which is the better marker for discriminating advanced Parkinson's disease?
por: Okuzumi, A., et al.
Publicado: (2019)