Cargando…
Remaining Useful Life Prediction of Rolling Bearings Based on Multi-Scale Attention Residual Network
The remaining useful life (RUL) prediction of rolling bearings based on vibration signals has attracted widespread attention. It is not satisfactory to adopt information theory (such as information entropy) to realize RUL prediction for complex vibration signals. Recent research has used more deep l...
Autores principales: | Song, Lin, Wu, Jun, Wang, Liping, Chen, Guo, Shi, Yile, Liu, Zhigui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217506/ https://www.ncbi.nlm.nih.gov/pubmed/37238553 http://dx.doi.org/10.3390/e25050798 |
Ejemplares similares
-
Remaining Useful Life Prediction of Rolling Bearings Based on Multi-scale Permutation Entropy and ISSA-LSTM
por: Wang, Hongju, et al.
Publicado: (2023) -
Remaining Useful Life Prediction Model for Rolling Bearings Based on MFPE–MACNN
por: Wang, Yaping, et al.
Publicado: (2022) -
Research on Remaining Useful Life Prediction Method of Rolling Bearing Based on Digital Twin
por: Zhang, Rui, et al.
Publicado: (2022) -
An improved multi-scale branching convolutional neural network for rolling bearing fault diagnosis
por: Xu, Meng, et al.
Publicado: (2023) -
A Multi-Featured Factor Analysis and Dynamic Window Rectification Method for Remaining Useful Life Prognosis of Rolling Bearings
por: Peng, Cheng, et al.
Publicado: (2023)