Cargando…

Effect of Insoluble Dietary Fiber Extracted from Feijoa (Acca sellowiana (O. Berg) Burret.) Supplementation on Physicochemical and Functional Properties of Wheat Bread

This study aimed to assess the effects of insoluble dietary fiber (IDF) from feijoa supplementation on the physicochemical and functional properties of wheat bread. The results showed that feijoa IDF (FJI) had the typical structures of hydrolysis fiber, polysaccharide functional groups, and crystal...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Dan, Wang, Qingming, Sun, Yunfei, Qing, Zilong, Zhang, Junhui, Chen, Qiyang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217513/
https://www.ncbi.nlm.nih.gov/pubmed/37238837
http://dx.doi.org/10.3390/foods12102019
Descripción
Sumario:This study aimed to assess the effects of insoluble dietary fiber (IDF) from feijoa supplementation on the physicochemical and functional properties of wheat bread. The results showed that feijoa IDF (FJI) had the typical structures of hydrolysis fiber, polysaccharide functional groups, and crystal structure of cellulose. The gradual increase of FJI levels (from 2 to 8%) in wheat bread resulted in increased total DF, ash, and protein contents, accompanied by a reduction in moisture, carbohydrates, and energy value. The inclusion of FJI in the bread crumb caused a rise in both redness (a*) and yellowness (b*) values while decreasing the brightness (L*) relative to the control specimen. In addition, adding FJI up to 2% significantly increased total phenolic and flavonoid contents and antioxidant activity, as well as flavor score of supplemented bread samples, while additions above 2% resulted in undesirable taste and texture. FJI addition caused higher bile acid, NO(2−), and cholesterol adsorption capacities. Moreover, FJI addition up to 4% significantly reduced glucose adsorption capacities at different in vitro starch digestion intervals. The findings revealed that FJI offers great potential as an ideal functional ingredient in food processing.